فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی

اختصاصی از فی موو مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی دانلود با لینک مستقیم و پر سرعت .

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی شیمی طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده ازمنابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.


دانلود با لینک مستقیم


مدلسازی فرایند حلالیت ایبوپروفن در دی اکسید کربن فوق بحرانی

طرح توجیهی تولید اکسید کروم در 15 صفحه

اختصاصی از فی موو طرح توجیهی تولید اکسید کروم در 15 صفحه دانلود با لینک مستقیم و پر سرعت .

طرح توجیهی تولید اکسید کروم در 15 صفحه


طرح توجیهی تولید اکسید کروم در 15 صفحه

اکسید کروم رنگ دانه ای سبز رنگ می باشد که بصورت پودر با خلوص 98 % عرضه می گردد. این ماده بعلت خواص فیزیکی و شیمیایی مناسب از جمله پایداری حرارتی بسیار بالا و مقاومت اسیدی و قلیایی عالی در صنایع کاشی ، سرامیک ، چینی سازی و صنایع تولید شیشه و لعاب کاری بعنوان ماده ای رنگزا ، استفاده می گردد و در صنایع لنت سازی بعنوان تقویت کننده مقاومت سایشی لنت کاربرد دارد.


دانلود با لینک مستقیم


طرح توجیهی تولید اکسید کروم در 15 صفحه

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

اختصاصی از فی موو اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم دانلود با لینک مستقیم و پر سرعت .

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه

حاصل از ترجمه مقالات معتبر خارجی - 43 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

_______________________________________________________________________________________

لینک عضویت در کانال تلگرامی دنیای فایل:

جهت اطلاع از آخرین و تمام فایلهای تحقیقاتی موجود، شما می توانید با کلیک بر روی لینک زیر و سپس کلیک بر روی join در پایین صفحه در کانال عضو شوید

https://telegram.me/joinchat/CYcguj_Bx3i5GIwnbs2zTw

 

_______________________________________________________________________________________

payannameht@gmail.com

فایلهای مرتبط :

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روشهای سنتز نانو ذرات اکسید تیتانیوم و لایه های نازک اکسید تیتانیوم

 

مقدمه

در کاربردهای مختلف این مواد، روش­های سنتز نانوساختارها و پارامترهای موثر در هر روش نقش بسیار مهمی دارند. در این فصل به بررسی و مطالعه اثر پارامترهای مهم در سنتز نانوذرات و لایه­های نازک اکسید تیتانیوم به روش سل ژل و اسپری پایرولیزیز می­پردازیم.

 

 

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل

3-1-1- نقش عامل کمپلکس­ساز

بطور کلی با کنترل فرایند تبدیل سل به ژل می­توان اندازه و شکل ذرات را کنترل کرد .در روش سل ژل اگر تعداد بیشتری از یون­های فلزی در محلول اولیه توسط عامل کمپلکس­ساز به کی­لیت تبدیل شوند، در نهایت ژل همگن­تری خواهیم داشت. بنابراین نوع وغلظت عامل کمپلکس­ساز در سنتز نانوساختارهایی یکنواخت مهم خواهد بود. در مقالاتی که گزارش خواهیم کرد، نقش این پارامتر مهم را بر روی خواص ساختاری نانوساختارهای دی­اکسید تیتانیوم بررسی می­کنیم.

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس­ساز مختلف به روش سل­ژل

یوکاوا[1]و همکارنش توانستند با پیش­ماده تیتانیوم تترا ایزوپروپکساید (TTIP) در دمای پایین، نانوذرات دی­اکسیدتیتانیوم را با فاز آناتاس و روتایل سنتز کنند [1]. آن­ها نشان دادند که حضور گروه­های هیدروکسیل (-OH) در عامل­های کمپلکس­ساز واکنش­های هیدرولیز را کنترل کرده و با افزایش تعداد اتم­های کربن و گروه­های  OHبرهمکنش بین عامل کمپلکس­ساز و یون­های Ti+4 افزایش می­یابد. در این تحقیق، از چهار پلی­ال متفاوت بعنوان عامل کمپلکس­ساز استفاده کرده و اثر تغییر غلظت آن­ها را روی گذار فاز، مورفولوژی و اندازه ذرات بررسی کرده­اند.

 در اینجا نتایج بدست آمده از عامل­های کمپلکس­ساز اتیلن­گلیکول[2][HOCH2CH2OH] و دی­مانیتول[3] [HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CH2OH] را گزارش خواهیم کرد.

- روش تهیه نانوذرات TiO2

30 درصد وزنی محلول H2O2 به 10 میلی لیتر از محلول 1 مولار اتانول حاویTTIP  که نسبت مولی آن با آب اکسیژنه برابر 12:1 است اضافه شده است. سپس محلول بدست آمده، هر بار با 100 میلی لیتر اتیلن گلیکول و دی­مانیتول رقیق شده است. غلظت پلی­ال­ها از mol/l0 تا 5 تغییر داده شده­اند. محلول در دمای 95 به­مدت 24 ساعت حرارت­دهی شد. سپس برای حذف ترکیبات آلی، فرآیند پراکنده­سازی ژل در 500 میلی لیتر آب مقطر در دمای 75 برای 1 ساعت انجام شده است. عملیات شستشو ژل تا 3 بار تکرار شد، سپس ژل را از آب جدا کرده و در دمای95 برای 12 ساعت در اتمسفر قرار داده­اند تا خشک گردد.

طیف­های پراش پرتو X (شکل 3-1-الف) در غیاب اتیلن­گلیکول، حضور ترکیبی از فاز آناتاس و روتایل را در نمونه­های تهیه شده نشان می­دهند. با افزایش غلظت اتیلن گلیکول از شدت پیک­های متعلق به فاز روتایل کاسته...

.

.

 

 

 

فهرست مطالب

عنوان                                                                                           صفحه

 

 

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   1

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 1

3-1-1- نقش عامل کمپلکس ساز 1

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 2

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 5

3-1-2- نقش حلال.. 13

3-1-3- اثر دمای بازپخت... 19

3-1-4- تغییر نسبت آب به آلکوکسید. 23

3-1-5- نوع کاتالیزور 26

3-1-6- اثر pH.. 27

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  30

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 30

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  34

 مراجع. 38

 

 

 

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 10

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 11

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 15

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 17

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 22

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 23

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 25

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 32

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 32

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 35

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 4

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  4

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، : اتیلن گلیکول.. 5

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 5

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 6

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 8

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 9

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   10

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  11

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 12

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 12

شکل3-12: استیل استن در دو شکل شیمیایی.. 15

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 15

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 16

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 17

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 18

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 18

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 20

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 21

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 23

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 23

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 24

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 25

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 26

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 30

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 31

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 32

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  32

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 34

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 35

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ........ 36

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 36


دانلود با لینک مستقیم


اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

تحقیق/مقاله آماده برقگیرهای اکسید روی Zno و استاندارد برقگیرها با فرمت ورد(word)

اختصاصی از فی موو تحقیق/مقاله آماده برقگیرهای اکسید روی Zno و استاندارد برقگیرها با فرمت ورد(word) دانلود با لینک مستقیم و پر سرعت .

تحقیق/مقاله آماده برقگیرهای اکسید روی Zno و استاندارد برقگیرها با فرمت ورد(word)


تحقیق/مقاله آماده برقگیرهای اکسید روی Zno و استاندارد برقگیرها با فرمت ورد(word)

برقگیرها بایستی قادر به حفاظت تجهیزات برقی در مقابل تخریب در اثر صاعقه باشند ، از طرف دیگر نبایستی در اثر بروز اشکالاتی در شبکه ( مثل کلیدزنی یا اتصال فاز با زمین و یا . . . ) بی جا عمل نموده یا صدمه ببیند . در هر حال ، انتخاب باید جامع شرایط بوده ، همچنین صرفه اقتصادی نیز مورد توجه قرار گیرد . در این مقاله علاوه بر تحلیل اصول کار و ساختمان برقگیرهای اکسید فلزی ( MOV ) و مقایسه آنها با نوع متداول سیلیکون کار باید ( SiC ) ، پارامترهای مهم در برقگیر و نحوه انتخاب آن مورد تحلیل قرار می گیرند. نوع مدرن برقگیرها دارای بلوکهائی با مقاومت الکتریکی غیرخطی و از جنس اکسید فلزات می باشد . این بلوکها به MOV مشهور هستند و به این علت که حدود 95 درصد از مواد این بلوکها را اکسید روی تشکیل می دهد به آنها ZNO نیز گفته می شود . اصول هدایت این نوع برقگیر بر اساس اثر واریستوری می باشد که از زینتر شدن اکسید روی با دیگر اکسیدهای فلزی حاصل می شود . شکل 9 نشان دهندۀ اصول ساده عملکرد واریستور می باشد . دانه های اکسید روی هادی خوبی هستند در حالی که اکسیدهای فلزی دیگر عایق خوبی هستند محل اتصال هر دو دانه اکسید روی در ناحیه ای به ضخامت 1 نانومتر تشکیل یک میکرو واریستور را می دهد . هر میکرو واریستور دقیقاً با یک دیود زینر ( با منحنی قرینه ) قابل مقایسه می باشد که ولتاژ شکست آن حدود 5/3 ولت می باشد ( 2/3 تا 8/3 ولت ) و تکنیک ولتاژ سد و حاملهای اقلیت و اکثریت و حفره و الکترون و همچنین الکترون ولت اکسید روی تعیین کننده این ولتاژ شکست می باشد .

فهرست :

مقدمه

انواع برقگیر

سیلیکون

اکسید فلزی

انتخاب برقگیر

پارامترهای مهم در انتخاب برقگیر

ماکزیمم ولتاژ کار دائم MCOV

جریان تخلیه نامی

منحنی های ایزوکرونیک سالیانه ایران

ماکزیمم جریان ضربه قابل تحمل

ماکزیمم جریان قابل تحمل با زمان زیاد

قابلیت تحمل جذب انرژی W

نمودار تعیین کلاس تخلیه برقگیر


دانلود با لینک مستقیم


تحقیق/مقاله آماده برقگیرهای اکسید روی Zno و استاندارد برقگیرها با فرمت ورد(word)