فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق نقش توان راکتیو در شبکه های انتقال و فوق توزیع

اختصاصی از فی موو دانلود تحقیق نقش توان راکتیو در شبکه های انتقال و فوق توزیع دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق نقش توان راکتیو در شبکه های انتقال و فوق توزیع


دانلود تحقیق نقش توان راکتیو در شبکه های انتقال و فوق توزیع

در این پروژه در مورد نقش توان راکتیو در شبکه های انتقال و فوق توزیع بحث شده است و شامل 5 فصل
می باشد که در فصل اول در مورد جبران بار و بارهایی که به جبران سازی نیاز دارند و اهداف جبران بار و جبران کننده های اکتیو و پاسیو و از انواع اصلی جبران کننده ها و جبران کننده های استاتیک بحث شده است و در فصل دوم در مورد وسایل تولید قدرت راکتیو بحث گردیده و درمورد خازنها و ساختمان آنها و آزمایش های انجام شده روی آنها بحث گردیده است و  در فصل سوم در مورد خازنهای سری و کاربرد آنها در مدارهای فوق توزیع و ظرفیت نامی آنها اشاره شده است و در فصل چهارم در مورد جبران کننده های دوار شامل ژنراتورها و کندانسورها و موتورهای سنکرون صحبت شده است و در فصل پنجم  ترجمه متن انگلیسی که از سایتهای اینترنتی در مورد خازنهای سری می باشد که در مورد UPFC می باشد.

توان راکتیو یکی از مهمترین عواملی است که در طراحی و بهره برداری از سیستم های قدرت AC منظور می گردد علاوه بر بارها اغلب عناصر یک شبکه مصرف کننده توان راکتیو هستند بنابراین باید توان راکتیو در بعضی نقاط سیستم تولید و سپس به محل‌های موردنیاز منتقل شود.

در فرمول شماره (1-1)  ملاحظه می گردد

قدرت راکتیو انتقالی یک خط انتقال به اختلاف ولتاژ ابتدا و انتها خط بستگی دارد همچنین با افزایش دامنه ولتاژ شین ابتدائی قدرت راکتیو جدا شده از شین افزایش می‌یابد و در فرمول شماره (2-1) مشاهده می گردد که قدرت راکتیو تولید شده توسط ژنراتور به تحریک آن بستگی داشته و با تغییر نیروی محرکه ژنراتور می توان میزان قدرت راکتیو تولیدی و یا مصرفی آن را تنظیم نمود در یک سیستم به هم پیوسته نیز با انجام پخش بار در وضعیت های مختلف می‌توان دید که تزریق قدرت راکتیو با یک شین ولتاژ همه شین ها  را بالا می برد و بیش از همه روی ولتاژ همه شین تأثیر می گذارد. لیکن تأثیر زیادی بر زاویه ولتاژ شین ها و فرکانس سیستم ندارد بنابراین قدرت راکتیو و ولتاژ در یک کانال کنترل می شود که آنرا کانال QV قدرت راکتیو- ولتاژ یا مگادار- ولتاژ می گویند در عمل تمام تجهیزات یک سیستم قدرت برای ولتاژ مشخص ولتاژ نامی طراحی می شوند اگر ولتاژ از مقدار نامی خود منحرف شود ممکن است باعث صدمه رساندن به تجهیزات سیستم یا کاهش عمر آنها گردد برای مثال گشتاور یک موتور القایئ یک موتور با توان دوم و ولتاژ ترمینالهای آن متناسب است و یا شارنوری که لامپ مستقیماً با ولتاژ آن تغییر می نماید بنابراین تثبیت ولتاژ نقاط سیستم از لحاظ اقتصادی عملی نمی باشد از طرف دیگر کنترل ولتاژ در حد کنترل فرکانس ضرورت نداشته و در بسیاری از سیستم ها خطای ولتاژ در محدوده 5% تنظیم می شود.

شامل 101 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق نقش توان راکتیو در شبکه های انتقال و فوق توزیع

کنترل کننده های توان راکتیو

اختصاصی از فی موو کنترل کننده های توان راکتیو دانلود با لینک مستقیم و پر سرعت .

کنترل کننده های توان راکتیو


کنترل کننده های توان راکتیو

تصحیح ضریب توان یکی از بهترین سرمایه گذاری ها برای کاهش هزینه های انرژی است که در زمانی اندک هزینه خود را برمی گرداند . در بسیاری از موارد طراحی سیستم و برآورد ابعاد آن ، به دلیل افزایش سالانه هارمونیک ها چه در شبکه های فشار ضعیف و چه در شبکه های متوسط ، سخت تر شده است. مبدل های قدرت ، کنترل کننده های موتوری ، مبدل های فرکانس ثابت ، تلوزیون ها و کامپیوتر ها به شبکه هارمونیک تزریق می کنند این هارمونیک ها ممکن است توسط امپدانس ها و خازن های شبکه تقویت شود. سیستم های تصحیح ضریب توان برای کاهش هزینه ها نصب می شوند و در طول مدت کمتر از ۳سال هزینه خود را برمیگردانند و بعد از آن سیستم به سود دهی می رسد. بنا بر این سیستم جبران ساز تا مدت زیادی باید بتواند به کار خود ادامه بدهد .

سیستم توزیع الکتریکی به همراه مصرف کننده های عمده وجزئی از طریق سیستم انتقال به ولتاژ فشار قوی متصل است. سطح ولتاژ در سیستم توزیع پایین است ودر نتیجه اندازه جریانها زیاد می باشد، به همین دلیل تلفات اهمی در سیستم های توزیع در مقایسه با سیستم های انتقال از اهمیت بیشتری برخوردار است. مسئله کاهش تلفات و بهبود کار آیی تحویل انرژی الکتریکی سیستم قدرت عمدتاً به بخش های توزیع الکتریکی بر میگردد. اغلب تجهیزات قدرت از قبیل موتورها و ترانسفورماتورها بعنوان بارهای سلفی و اندوکتیو هستند که در نتیجه سبب پس فاز شدن ضریب قدرت می شوند و موجب کاهش ظرفیت سیستم ‚افزایش تلفات سیستم و در نهایت کاهش ولتاژ می شود . برای رفع این مشکلات از کنترل کننده های توان راکتیو استفاده می شود که شامل

  • استفاده از موتور سنکرون برای تصحیح ضریب توان
  • استفاده از جبران کننده استاتیکیSVC برای جبران توان راکتیو
  • اصلاح ضریب توان با استفاده از بانک خازنی
  • جبران ساز سلفی
  • کندانسورهای سنکرون

به طور کلی کنترل قدرت راکتیو ولتاژ از سه روش اصلی زیر انجام می گیرد.

1- با تزریق قدرت راکتیو سیستم توسط جبران کننده هائی که به صورت موازی متصل می شوند مانند خازن- راکتیو کندانسور کردن و جبران کننده های استاتیک

2- با جابجا کردن قدرت راکتیو در سیستم توسط ترانسفورماتورهای متغیر ازقبیل پی و تقویت کننده ها

3- از طریق کم کردن راکتانس القائی خطوط انتقال با نصب خازن سری

 

مشاهده در سایت مهندسی برق

http://f35.ir/reactiv/


تعداد صفحات پروژه: 116 صفحه


دانلود با لینک مستقیم


کنترل کننده های توان راکتیو

دانلود مقاله طراحی و ساخت جبران کننده ایستای توان راکتیو منبع ولتاژی برای جبران بار

اختصاصی از فی موو دانلود مقاله طراحی و ساخت جبران کننده ایستای توان راکتیو منبع ولتاژی برای جبران بار دانلود با لینک مستقیم و پر سرعت .

 

 

کلمات کلیدی: جبران کننده ایستای توان راکتیو، SVC ، STATCOM، اینورتر چند سطحی.

 

 

 

چکیده

 

هدف، طراحی و ساخت یک جبران کننده ایستای توان راکتیو از نوع منبع ولتاژی و بصورت چند سطحی بوده‌است،  یک اینورتر سه سطحی از نوع اینورترهای متوالی با توان نامی +3KVAR  طراحی و ساخته شده‌است، و یک روش کنترلی بر اساس کنترل اختلاف فاز با استفاده از مدولاسیون برنامه‌ریزی و بهینه شده اجرا شده‌است.

 

            مدارات پروژه شامل برد راه‌انداز کلیدهای الکترونیک قدرت، بردهای اندازه‌گیری ولتاژ و جریانهای فیدبک، برد پردازشگر اصلی، برد حفاظت از خازنها  بوده‌است.

 

 

 

1-    مقدمه

 

            از پیشرفته‌ترین کنترل کننده‌های توان راکتیو که در دو دهة اخیر به مدد پیشرفت ساخت ادوات نیمه‌هادیهای قدرت با توان بالا ارائه شده‌اند جبران کننده‌های ایستای توان راکتیو ( SVC ) می‌باشند. این جبران کننده‌ها در مقایسه با جبران کننده‌های دیگر مزایایی مانند قابلیت انعطاف بیشتر و سرعت پاسخ بالاتر دارند، یکی از آخرین انواع SVC نوع اینورتری آن معروف به STATCOM می‌باشد که نسبت به انواع قبلی مزایایی مانند استفاده از حداقل عناصر ذخیره کننده انرژی، فضای کمتر مورد نیاز و سرعت پاسخ بالاتر دارد، در این جبران کننده‌ها از مبدلهای DC/AC استفاده می‌شود که در حالت کلی می‌توانند چند سطحی باشند. اینورترهای چند سطحی نسبت به اینورترهای متداول قابلیت کار در توانها و ولتاژهای بالاتری دارند و همچنین در فرکانس کلیدزنی مشابه میزات آلودگی کمتری به لحاظ هارمونیکی ایجاد می‌کنند.

 

                از آنجا که برای نمونه آزمایشگاهی طراحی، ساخت و تست یک سیستم تک فاز راحتتر است، جبران کننده مورد نظر بصورت تکفاز در نظر گرفته شد ولی در طراحی همواره سعی شد تا ملاحظاتی در نظر گرفته شود که سیستم قابل گسترش به سه‌فاز هم باشد و یا اینکه بتوان برای هر فاز یک جبران کننده مستقل در نظر گرفت.طراحی براساس دو اینورتر متوالی انجام شده که یک اینورتر پنج سطحی تکفاز را تشکیل می‌دهد.

 

            در طراحی سعی شده که همه متغیرهای لازم بصورت نرم‌افزاری وجود داشته باشند تا انواع روشهای مدولاسیون و کنترل قابل پیاده سازی باشند و در انتها دو روش مدولاسیون و کنترل اجرا  شده‌است.

 

 

 

2- تقسیم بندی

 

یک جبرانساز ایستای سنکرون با کنترل میکروپروسسوری را می‌توان بصورت شکل 1) تقسیم بندی نمود. هدف از تقسیم بندی مستقل سازی وظایف هر یک از بخشها و ریز کردن پروژه به بخشهای کوچکتر است. در اینجا به توصیف مختصری از شرح وظایف هر یک از این بخشها می‌پردازیم.

 

شکل1) بلوک دیاگرام جبران کننده طراحی شده

 

 

 

2-1-  حفاظت  ورودی

 

وظیفه این بخش حفاظت کل سیستم شامل جبران کننده و بار در مقابل خطاهای اضافه ولتاژ یا اضافه جریان است. از آنجا که این سیستم در حال تست بوده و به دفعات زیاد آزمایش می‌شود در مقابل وقوع خطا مستعد بوده و حفاظت در مقابل انواع خطاها از جمله اضافه ولتاژ و اضافه جریان بعلت خطاهای سیستم و ناپایداری آن لازم به نظر می‌رسد. این قسمت شامل چهار نوع حفاظت زیر می‌باشد.

 

-          حفاظت اضافه جریان کم و بلند مدت

 

-          حفاظت اضافه جریان زیاد و لحظه‌ای

 

-          حفاظت اضافه ولتاژ کم و بلند مدت

 

-          حفاظت اضافه ولتاژ زیاد و لحظه‌ای

 

 

 

2-2- فیلتر ورودی

 

وظیفه این بخش فیلترکردن جریان کل سیستم شامل جبران کننده و بار است تادرحد ممکن درشبکه برق شهری هارمونیکهای کمتری تزریق گردد، وجود این بخش از آن جهت لازم به نظر می‌رسید که بدلیل موقعیتهای مختلف و زیاد در تست، تأثیر کارکرد سیستم بر شبکه بخصوص مصرف کننده‌های نزدیک را کاهش دهیم، این بخش از یک فیلتر LC تشکیل شده است.

 

 

 

شکل 2) فیلتر ورودی

 

 

 

2-3- بخش ترانسهای جریان و ولتاژ

 

این بخش از دو عدد ترانسفورماتور جریان و ولتاژ تشکیل شده است تا از جریان و ولتاژ مجموعه بار و جبران کننده اندازه گیری نمایند. ترانسفورماتور ولتاژ جهت تهیه سیگنالی متناسب و ایزوله از ولتاژ ورودی استفاده می‌شود، نسبت تغییرات ولتاژ صفر تا 250 ولت اولیه به صفر تا 10 ولت ثانویه می‌باشد.

 

ترانسفورماتور جریان جهت تهیه سیگنالی متناسب و ایزوله از مجموع جریان بار و  جبران کننده استفاده می‌شود. نسبت تغییرات صفر تا 100 آمپرجریان اولیه به تغییرات صفر تا 250 میلی آمپر ثانویه است. این ترانسفورماتور در حالتهای خطا و گذرا نباید به اشباع یا ناحیه غیر خطی نزدیک گردد و به این منظور دامنه کارکرد آن بزرگتر در نظر گرفته شده‌است.

 

 

 

2-4- بخش اتصال بار

 

این بخش جهت اتصال بار امکاناتی را فراهم می‌نماید و بطور ساده می‌تواند فقط شامل ترمینالهایی باشد، این بخش به این علت در نظر گرفته شده است تا موقعیت اتصال بار به سیستم مشخص باشد. در این بخش امکانات دیگری نظیر کلید، فیوز و محافظتهای دیگر می‌توان در نظر گرفت.

 

 

 

2-5- بخش راکتانس

 

این بخش شامل یک سلف است که راکتانس اصلی جبران کننده ایستای توان راکتیو به منظور فیلتر سازی ولتاژ خروجی اینورتر می‌باشد. مقدار سلف از رابطه اصلی جبران کننده توان راکتیو و مشخصات مورد نیاز بدست آمده است و به صورت زیر طراحی شده است:

 

(1)       

 

که  α زاویه آتش پالسهای اینورتر است ،اگر Vs برابر 220 ولت باشد و توان راکتیو +3KVAR تا –3KVAR  بخواهیم داشته باشیم آنگاه :

 

(2)                       L=10mH

 

(3)                                         IMAX=14A

 

 

 

2-6- کلیدهای اصلی

 

این بخش شامل کلیدهای اصلی اینورتر از نوع IGBT می‌باشد که به صورت آرایش تمام پل و تک فاز بسته شده‌اند. همچنین مدارهای اسنابری، دیودهای موازی- معکوس، خازنهای طرف DC در این بخش هستند.

 

آرایش این بخش بصورت دو اینورتر متوالی تک فاز  تمام پل است که یک اینورتر تک فاز پنج سطحی را تشکیل می‌دهند. کلیدها از نوع IGBT همراه با دیودهای موازی- معکوس هستند که با توجه به نیازهای طراحی  و المان بصرفه موجود در بازار ایران، المان SKM75GD123 از محصولات شرکت SEMIKRON انتخاب شده است.

 

مدار اسنابر : با توجه به پیشنهاد سازندة کلیدها و اینکه از نوع IGBT هستند، یک مدار اسنابر خازنی ساده برای کلیدها کفایت می‌کند، که با توجه به این پیشنهاد از خازنهای از نوع MKP با سلف بسیار کم در  نزدیکترین نقطه به کلیدها با اندازه  100nF تا  200nF  استفاده شده است.

 

مدار محافظت اتصال کوتاه: این بخش شامل یک فیوز  و یک مدار تشخیص اضافه جریان است که در صورت عبور جریان بیش از حد از خازن با اصال کوتاه نمودن مدار باعث سوختن فیوز می‌شود.

 

محافظت در لحظه راه‌اندازی: چنانچه اینورتر را بصورت شکل 3) در نظر بگیریم در لحظه‌ای که ولتاژ خازن پائین بوده و مدار به برق شهر متصل می‌گردد مسیری از طریق دیودهای موازی- معکوس برای شارژ اولیه خازن وجود دارد که جریان این شارژ اولیه می‌تواند تا چندین برابر جریان نامی کلیدها و دیودها باشد و حتی به خازنها نیز صدمه بزند ، برای جلوگیری از این موضوع همواره مقاومتی با این خازن سری بوده و در صورتی که ولتاژ آن از حدی بیشتر شود توسط رله ای این مقاومت اتصال کوتاه می‌گردد.

 

 

 

شکل3) اینورتر و مدار محافظت راه‌اندازی

 

 

 

-          محاسبه اندازه خازن: اندازه خازن با توجه به مقدار تضاریس قابل تحمل برای بخش مدولاسیون و کنترل کننده بصورت زیر محاسبه می‌شود:

 

(4)

 

       

 

که در طراحی مورد نظر مقدار ولتاژ خازنها را 310 ولت و مقدار تضاریس آنها را 40+  ولت در نظر گرفته شده‌است.

 

 

 

2-7- بخش فیدبک

 

این بخش فیدبکهای لازم را برای پردازشگر اصلی تهیه می‌نماید، فیدبکهای لازم برای سیستم شامل اندازه ولتاژ خازنهای طرف DC در اینورترها، اندازه و فاز جریان و ولتاژ سیستم می‌باشند. این سیگنالها قبل از رسیدن به پردازشگر اصلی و مبدل آنالوگ به دیجیتال باید ایزوله و مهیا شده باشند که در این بخش انجام می‌گیرد. این بخش از دو  برد تشکیل شده است، یک برد اندازه‌گیری ولتاژ و جریان ورودی سیستم و برد دوم اندازه‌گیری ولتاژ خازنهای طرف DC و مدار راه‌انداز رله حفاظت این خازنها.

 

 

 

2-7-1-  برد اندازه‌گیری I و V

 

این برد سیگنالهایی متناسب با ولتاژ و جریان سیستم متشکل از بار و جبران کننده را از ترانسهای جریان و ولتاژ دریافت می‌نماید و در انتها این سیگنالها را مطابق بلوک‌ دیاگرام شکل4) برای مبدل آنالوگ به دیجیتال مربوطه در برد پردازشگر آماده می‌سازد، همچنین سیگنالی هم فاز با فاز ولتاژ شبکه و فرکانس 16 برابر آن نیز تهیه نموده و به پردازشگر می‌دهد، لازم به ذکر است که تمام ورودیهای این برد توسط ترانسفورماتورها از بخش قدرت و برق شهر ایزوله شده‌اند و نیازی به ایزولاتور در این برد نیست.

 

 

 

شکل 4) بلوک دیاگرام برد اندازه‌گیری جریان و ولتاژ

 

 

 

 مدار قفل فاز و سنکرون کننده: این بخش شامل دو بلوک بصورت شکل 5) می‌باشدکه جهت تحقق مدار آشکار ساز عبور از صفر از یک تقویت کننده با گین مثبت و مشخصه هیستریزیس  استفاده شده است. در بخش مدار قفل فاز از تراشه LM565 با مدار پیشنهادی سازنده استفاده شده است، در مسیر فیدبک آن از یک شمارنده چهار بیتی استفاده شده که به این وسیله یک ضرب کننده فرکانس ایجاد شده است، از خروجی این بخش برای سنکرون کردن سیستم با شبکه برق شهری استفاده شده است.

 

 

 

 

 

شکل 5) بلوک دیاگرام مدار قفل فاز

 

 

 

 

 

شکل 6) مدار قفل فاز و ضرب کننده فرکانس

 

 

 

2-7-2- ‌ برد اندازه‌گیری ولتاژ خازنهای اینورترها و حفاظت آنها

 

وظیفه این مدارات اندازه‌گیری  ولتاژ خازنهای طرف DC اینورترها است، از آنجا که بسته به نوع کلید زنی، تلفات مدار و مقدار توان حقیقی جابجا شده ولتاژ طرف اتصال  DC تغییر می‌کند و امکان افت یا افزایش ولتاژ آن از حد تعیین شده وجود دارد این بخش ولتاژ خازنها را اندازه گیری نموده و بعد از ایزوله کردن برای مبدل آنالوگ به دیجیتال در بخش پردازشگر اصلی آماده می‌نماید.

 

وظیفه دیگر این برد تحریک رله ای است که مقاومت سری با خازن های مذکور را اتصال کوتاه می‌کند، بدلیل محدود کردن جریان راه‌اندازی اولیه ( وقتی که ولتاژ خازنها پائین است ) مقاومتی بصورت عادی با خازن سری است  و چنانچه ولتاژ خازن از حدی بیشتر شد این مدار رله‌ای را تحریک نموده و مقامت مذکور را اتصال کوتاه می‌کند. بلوک دیاگرام این بخش بصورت شکل زیر است.

 

 

 

شکل 7) بلوک دیاگرام برد اندازه‌گیر ولتاژ خازنها

 

 

 

2-8- منبع تغذیه

 

این بخش وظیفه تهیه تغذیه‌های لازم برای بخشهای دیگر را بعهده دارد، بخشهایی که از این بخش تغذیه می‌شوند عبارتند از: بخش  پردازشگر اصلی، بخش فیدبک و بخش راه‌انداز کلیدها.

 

این بخش تغذیه‌های 5+ ، 12+  و12- ولت را برای این بخشها تهیه می‌نماید که از یکدیگر ایزوله نمی‌باشند و زمین یکسانی دارند، در مراحل آزمایشگاهی می‌توان از منابع تغذیه موجود بجای این بخش استفاده نمود.

 

2-9- راه‌انداز کلیدها

 

وظیفه این بخش راه‌اندازی گیتهای کلیدها می‌باشد، توسط پردازشگر اصلی زمان خاموش/روشن شدن کلیدها به این بخش اعلام می‌گردد و این بخش این فرمانها را ایزوله نموده و به گیتها اعمال می‌نماید، وظیفه دیگر این بخش حفاظت از کلیدها در مقابل خطاهای احتمالی و فیدبک دادن به پردازشگر اصلی در موقع وقوع خطا است.

 

این برد به منظور راه‌اندازی، کنترل و حفاظت چهار کلید الکترونیکی قدرتی از نوع IGBT طراحی شده است که بصورت دو کلید در یک ساق قرار گرفته‌اند، این برد دو وظیفه ایزولاسیون سیگنالهای فرمان و محافظت کلیدها را در برابر عدم کارکرد صحیح و ایجاد زمان مرده بین فرمان دو کلید را دارا می‌باشد. بلوک دیاگرام این بخش بصورت شکل8) می‌باشد:

 

 

 

شکل 8) بلوک دیاگرام راه‌انداز کلیدها

 

 

 

            از آنجا که همواره در مدارات اینورتری در هر فاز دو کلید وجود دارد که در یک ساق قرار می‌گیرند و شرایطی بر نحوه کلیدزنی و عملکرد آنها وجود دارد این برد به منظور برقراری این شرط بصورت ذیل طراحی شده است:

 

1-       ایجاد زمان مرده بین روشن شدن متوالی کلیدهای یک ساق.

 

2-       جلوگیری و ممانعت از هر گونه امکان روشن شدن همزمان دو کلید.

 

3-       اعمال سیگنال فرمان گیت و فرمانهای کنترلی بصورت ایزوله.

 

4-       حفاظت از کلیدها.

 

 

 

2-9-1- جلوگیری از همزمانی روشن شدن و ایجاد زمان مرده

 

برای ایجاد زمان مرده زمانهای روشن شدن و خاموش شدن کلیدها را در نظر بگیریم به زمان td  نیاز است تا در آن زمان هر دو کلید خاموش باشند، که مطابق شکل زمان مورد نظر توسط مدارات RC و معکوس کننده‌ها ایجاد شده است، مقدار RC و سطح آستانه ورودی معکوس کننده، زمان td را تعیین می‌نمایند.

 

مطابق شکل 9) در این بخش، از دو گیت معکوس کننده در ورودیها استفاده شده است تا با استفاده از ویژگی اشمیت تریگر ورودی آنها استفاده شود و اگر نویزی روی ورودیها باشد حذف شوند، و از یک گیت معکوس کننده و یک انتخابگر استفاده شده است تا چنانچه برد بخواهد همواره سیگنال دو کلید بصورت معکوس یکدیگر باشند این امکان وجود داشته باشد.

 

 

 

شکل 9) مدار بخش جلوگیری از همزمانی روشن شدن دو کلید و ایجاد زمان مرده

 

            از گیت AND و یک معکوس کننده نیز برای ایجاد سیگنالهای EXT-ENABLE و  Power-good استفاده شده‌است، چنانچه هر دو این سیگنالها یک باشند این بخش بدرستی عمل خواهد نمود، لازم به ذکر است که ترکیب مدار فوق از هرگونه همزمانی روشن بودن دو کلید جلوگیری می‌کند و روشن شدن هر کلید مشروط به خاموش بودن کلید دیگر و آنهم بعد از سپری شدن زمان  td  از خاموش شدن آن است.

 

 

 

2-9-2- اعمال فرمانهای کنترلی و فیدبکهای ایزوله

 

در این بخش برای هر یک از کلیدها، از یک مدار مجتمع HPL-316J استفاده شده است، این مدار مجتمع سیگنال فرمان ورودی را بصورت ایزوله و تقویت شده به کلید اعمال می‌نماید، تقویت سیگنال از این جهت لازم به نظر می‌رسد که اولاً دامنه ولتاژ اعمالی به گیت-امیتر کلیدها باید حدود 15 تا 18 ولت باشد و مهمتر آنکه بدلیل وجود خازن نسبتاً بزرگ دیده شده از طرف گیت-امیتر سیگنال فرمان گیت-امیتر باید قابلیت شارژ سریع اولیه این خازن را داشته باشد تا کلید سریع و با تلفات روشن شدن کم روشن گردد.

 

 

 

شکل 10) مدار اعمال فرمانهای کنترلی و فیدبکهای ایزوله

 

 

 

از این مدار مجتمع در وضعیت معکوس و  خاموشی/بازنشانی عمومی مطابق مدار پیشنهادی در داده‌های سازنده استفاده شده است، در این حالت فرمان ورودی به پایه معکوس ( پایه دوم) متصل شده است و وضعیت غیر فعال به معنی روشن بودن کلید است و سیگنال خطای همه کلیدها بصورت OR  سیمی به یکدیگر متصل شده‌اند و به ورودی مستقیم (پایه یک) این مدار مجتمع متصل شده‌اند، همچنین پایه RESET همه مدار مجتمع ها به یکدیگر متصل شده‌اند.

 

با این آرایش چنانچه مدار مجتمع یکی از کلیدها خطایی اعلام نماید باعث غیر فعال شدن عملکرد همه کلیدها می‌شود و تا یک سیگنال RESET اعمال نگردد وضعیت سیستم در همین مرحله خواهد ماند.

 

 

 

2-10- پردازشگر اصلی

 

وظیفه این بخش پردازش اطلاعات دریافتی از فیدبکهای گرفته شده و تهیه فرمانهای لازم برای گیتهای کلیدها می‌باشد تا توان راکتیو بار را طبق الگوریتم کنترلی ارائه شده جبران نماید، در این بخش از یک پردازنده 80196 استفاده شده است و از امکان ارتباط و برنامه پذیری از طریق یک کامپیوتر شخصی نیز برخوردار است، به این صورت که یک برنامه ثابت در حافظه فقط خواندنی قرار می‌گیرد و بعد از RESET  شدن برد منتظر دریافت برنامه‌ای از طریق پورت سریال با استاندارد RS232 می گردد و پس از دریافت کامل برنامه اجرا و پردازش پردازنده را در اختیار برنامه دریافتی قرار می‌دهد، این عمل باعث سهولت وتسریع تستهای مختلف نرم‌افزاری می‌گردد.

 

            بطور خلاصه وظایف پردازنده را می‌توان بصورت محاسبات لازم جهت موارد زیر نام برد:

 

الف) اجرای الگورتم کنترل و جبران توان راکتیو مطابق یکی از روشهای پیشنهادی.

 

ب) کنترل و تصحیح ولتاژ خازنهای طرف DC .

 

ج) فرمان دادن به گیت کلیدها مطابق روش مدولاسیون.

 

د) لحاظ نمودن استفاده یکسان از کلیدها و اینورترها.

 

ه) حفاظتها و اعلام آلارمهای لازم.       

 

و) نمونه برداری و تبدیل سیگنالهای آنالوگ به دیجیتال.

 

            با توجه به کلاک 16MHz برای پردازنده، در هر سیکل برق شهر حدود 80,000 دستورالعمل را می‌توان اجرا نماید، با ملاحظات در نظر گرفته شده برای بخش کنترل و مدولاسیون پردازنده می‌تواند تا 14 نمونه برداری در هر سیکل از ورودیها برای محاسبات اندازه‌گیری و اعمال 32 سیگنال گیت به کلیدها در هر سیکل ( فرکانس کلیدنی 1600Hz ) را داشته باشد. برای اطمینان از توانایی پردازنده 12 نمونه برداری از هر چهار کانال ورودی در هر سیکل و فرکانس کلیدزنی 1400Hz  برگزیده شده است

 

 

 

2-11-باس‌وسیگنالینگ‌بردهای‌الکترونیکی

 

به منظور ماژولار بودن و سهولت طراحی و تست سخت افزار از یک باس اختصاصی استفاده شده است. این باس از دو بخش تشکیل شده است، بخش اول که سیگنالهای قدرتی هر برد را هدایت می‌کند و بخش دوم که سیگنالهای دیجیتال را بین بردها هدایت می‌کند.

 

 

 

3- طراحی سیستم مدولاسیون

 

بخش مدولاسیون، زاویه  α را از کنترل کننده گرفته و فرامین مناسبی به کلیدهای اینورترهای A و  Bاعمال می‌نماید، همانطور که در تشریح نحوه کنترل خواهد آمد، در این طراحی توان راکتیو با کنترل زاویه α کنترل می‌شود، که زاویه α مقدار اختلاف زاویه ولتاژ برق شهر و اینورتر است. طراحی بقیه اجزاء سیستم بگونه‌ای صورت گرفته است که تمام اطلاعات لازم برای کنترل کننده و مدولاتور بصورت نرم‌افزاری موجود هستند از این رو امکان اجرای الگوریتمهای مختلف مدولاسیون بصورت نرم‌افزاری وجود دارد. در این بخش ابتدا آرایشهای مختلف کلیدزنی را که در این جبران کننده پنج سطحی وجود دارند بیان خواهند شد و سپس روشهای مدولاسیون پیشنهادی ارائه خواهند شد.

 

3-1- آرایشهای مختلف کلیدزنی: آرایش اینورتر پنج سطحی طراحی شده بصورت ترکیب متوالی دو اینورتر سه سطحی تمام پل می‌باشد که به اینورترهای A  و B نامیده می‌شوند، با این ترکیب چند حالت کلیدزنی وجود خواهد داشت که الگوریتم کنترل کننده و مدولاسیون از این حالتها استفاده می‌نماید.

 

3-2- سطح ولتاژ مورد نظر در خروجی اینورتر: بر اساس اینکه چه سطح ولتاژی از ولتاژهای 2V، V، صفر، -Vو –2V یکی از این پنج حالت انتخاب می‌گردد.

 

3-3- جهت جریان جبران کننده و ولتاژ خازنها: از آنجا که سیستم در فرکانس پنجاه هرتز و بصورت AC کار می‌کند منظور از جهت جریان جبران کننده مثبت یا منفی بودن آن در هر لحظه می‌باشد، جریان جبران کننده در یک جهت باعث افزایش ولتاژ خازنها شده و در جهت دیگر باعث کاهش ولتاژ آنها خواهد شد و اگر جبران کننده بدون تلفات کار کند و جریان آن عمود بر ولتاژش می‌باشد(اختلاف فاز 90 درجه بین ولتاژ وجریان ) همواره در انتهای یک سیکل ولتاژ خازن ثابت خواهد ماند و تغییری نمی‌کند اما بدلیل وجود تلفات و تغییرات مقدار توان راکتیو جذب یا تزریقی توسط جبران کننده همواره لازم است که ولتاژ خازنها تغییر کنند که این عمل با ایجاد شیفت فاز کوچکی انجام می‌گردد، حال مقدار شیفت فاز و جهت جریان جبران کننده باید به نحوی صورت گیرد که این عمل به افزایش یا کاهش ولتاژ خازن خواسته شده منجر شود.

 

3-4- استفاده یکسان از کلیدها و اینورترها:از آنجا که دو اینورتر بصورت یکسان و مشابه طراحی شده‌اند، لازم است بصورت یکسان از آنها استفاده شود بخش مدولاسیون می‌تواند با استفاده مناسب از روشهای مختلف و حالتهای انتخابی از کلیدها و اینورترها بصورت یکسان استفاده نماید.

 

3-5- کاهش تعداد کلیدزنیها: این نکته را می‌توان این چنین بیان کرد که بعد از اتمام یک حالت کلیدزنی برای ایجاد حالت بعدی یک تعداد از کلیدهای روشن باید خاموش شوند و یک تعداد از کلیدهای خاموش باید روشن گردند و یک تعداد نیز در وضعیت قبلی خود بمانند، حال در این بین حالتهای مختلفی وجود دارند که بخش مدولاسیون می‌تواند حالتی را انتخاب نماید که کمترین تغییر وضعیت کلیدها را در پی داشته باشد، این عمل کلیه مزایای کاهش تعداد کلیدزنی نظیر تلفات کمتر و افزایش طول عمر قطعات را در پی خواهد داشت.

 

3-6-  بدست آوردن الگوی مدولاسیون

 

در اینجا الگوریتم مدولاسیون برنامه ریزی شده استفاده می‌شود، در این‌ روش زوایای کلیدزنی و سطوح ولتاژ آنها در یک چهارم دوره کلید زنی تعیین می‌شوند و برای بقیه دوره بصورت  متقارن تکرار می‌گردند. با توجه به مشخصات سیستم و ملاحظات طراحی، هفت زاویه کلید زنی بصورت α1 تا α7 مناسب به نظر  می‌رسد در ابتدا باید الگوی PWM مذکور را بدست آورد و پس از آن برای بدست آوردن هفت زاویه، هفت درجه آزادی خواهیم داشت که باید به نحو مناسب از آنها استفاده نمود، در تدارک این شرطها روشهای متفاوتی پیشنهاد می ‌شوند که در بخش بعدی بیان خواهند شد. برای بدست آوردن این الگو و زوایای تقریبی از چهار روش مدولاسیون استفاده ‌شد. این روشها بر اساس شکل موج سینوسی و مثلثی می‌باشند که برای اینورترهای چند سطحی توسعه یافته‌اند، برای یک اینورتر M سطحی M-1 موج حامل نیاز دارند، برای بدست آوردن این الگو روشهای فوق شبیه سازی شدند و الگویی مطابق شکل11) بدست آمد

 

 

 

شکل 11) الگوی مدولاسیون بدست آمده

 

3-7-  بدست آوردن زوایای کلیدزنی

 

همانطور که بیان شد برای بدست آوردن زوایای  کلیدزنی هفت درجه آزادی داریم روشهای مختلف بصورتهای مختلف از این موضوع استفاده می‌کنند اما در این میان شرایطی نیز بصورت ذاتی بر این زاویا باید رعایت شوند که عبارتند از:

 

الف) توالی زوایا بصورت زیر                           (5)

 

 

 

ب)رعایت حداقل اختلاف زوایای متوالی که به دلیل محدودیتهای ذاتی مدارات اعمال زوایای کلیدزنی با اختلاف کمتر از یک حد امکان پذیر نمی‌باشد، این حداقل اختلاف حدود دو تا سه درجه است.

 

(6)

 

 

 

 

            

 

ج) در اغلب روشها شرط اندیس مدولاسیون نیز باید رعایت گردد تا دامنه مؤلفه اصلی ولتاژ در مقدار تعیین شده تضمین گردد.

 

در تهیه بقیه شروط اغلب از دو روش حذف هارمونیکهای خاص و روش مینیمم کردن طیف هارمونیکها برای ولتاژ/ جریان استفاده می شود که قبل از بررسی این دو روش باید بر اساس الگوی بدست آمده تبدیل فوریه شکل موج را محاسبه نمود. با توصیفات گذشته در مورد الگوی کلیدزنی که دارای تقارن نیم موج است، مؤلفه‌های کسینوسی تبدیل فوریه آن صفر بوده و مؤلفه‌های سینوسی زوج آن نیز بدلیل تقارن نیم موج صفر است، در نتیجه تبدیل فوریه شکل موج ولتاژ خروجی اینورتر بصورت زیر بدست می‌آید:

 

(7)n های فرد          

 

که مؤلفه اصلی ولتاژ  V1 و مؤلفه هارمونیک nام ولتاژ Vn می‌باشد و با فرض R<<LW< SPAN> می‌توان نوشت. مؤلفه اصلی جریان I1 برابر:

 

(8)                                   

 

و مؤلفه‌های هارمونیک nام جریان، In برابر:

 

(9)                               

 

است. باید این نکته را در نظر گرفت که اگر سیستم بصورت سه فاز کار می‌کرد هارمونیکهای مضرب سه وجود نداشتند و این هارمونیکها نیز از محاسبات حذف می‌شدند. حال دو روش محاسبه زوایای α1  تا α7 را بررسی می‌کنیم.

 

الف- مینیمم کردن طیف هارمونیکها: در این روش طبق تعریف THDV و THDI بصورت زیر داریم:

(10)                                     

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  15  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله طراحی و ساخت جبران کننده ایستای توان راکتیو منبع ولتاژی برای جبران بار

دانلود پروژه رشته برق - نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد

اختصاصی از فی موو دانلود پروژه رشته برق - نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه رشته برق - نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد


دانلود پروژه رشته برق - نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد

 

 

 

 

چکیده:

در این پروژه در مورد نقش توان راکتیو در شبکه های انتقال و فوق توزیع بحث شده است و شامل 5 فصل
می باشد که در فصل اول در مورد جبران بار و بارهایی که به جبران سازی نیاز دارند و اهداف جبران بار و جبران کننده های اکتیو و پاسیو و از انواع اصلی جبران کننده ها و جبران کننده های استاتیک بحث شده است و در فصل دوم در مورد وسایل تولید قدرت راکتیو بحث گردیده و درمورد خازنها و ساختمان آنها و آزمایش های انجام شده روی آنها بحث گردیده است و  در فصل سوم در مورد خازنهای سری و کاربرد آنها در مدارهای فوق توزیع و ظرفیت نامی آنها اشاره شده است و در فصل چهارم در مورد جبران کننده های دوار شامل ژنراتورها و کندانسورها و موتورهای سنکرون صحبت شده است و در فصل پنجم  ترجمه متن انگلیسی که از سایتهای اینترنتی در مورد خازنهای سری می باشد که در مورد
UPFC می باشد.

 

 

 

 

 


 

 

فصل اول:

جبران بار

مقدمه

توان راکتیو یکی از مهمترین عواملی است که در طراحی و بهره برداری از سیستم های قدرت AC منظور می گردد علاوه بر بارها اغلب عناصر یک شبکه مصرف کننده توان راکتیو هستند بنابراین باید توان راکتیو در بعضی نقاط سیستم تولید و سپس به محل‌های موردنیاز منتقل شود.

در فرمول شماره (1-1)  ملاحظه می گردد

قدرت راکتیو انتقالی یک خط انتقال به اختلاف ولتاژ ابتدا و انتها خط بستگی دارد همچنین با افزایش دامنه ولتاژ شین ابتدائی قدرت راکتیو جدا شده از شین افزایش می‌یابد و در فرمول شماره (2-1) مشاهده می گردد که قدرت راکتیو تولید شده توسط ژنراتور به تحریک آن بستگی داشته و با تغییر نیروی محرکه ژنراتور می توان میزان قدرت راکتیو تولیدی و یا مصرفی آن را تنظیم نمود در یک سیستم به هم پیوسته نیز با انجام پخش بار در وضعیت های مختلف می‌توان دید که تزریق قدرت راکتیو با یک شین ولتاژ همه شین ها  را بالا می برد و بیش از همه روی ولتاژ همه شین تأثیر می گذارد. لیکن تأثیر زیادی بر زاویه ولتاژ شین ها و فرکانس سیستم ندارد بنابراین قدرت راکتیو و ولتاژ در یک کانال کنترل می شود که آنرا کانال QV قدرت راکتیو- ولتاژ یا مگادار- ولتاژ می گویند در عمل تمام تجهیزات یک سیستم قدرت برای ولتاژ مشخص ولتاژ نامی طراحی می شوند اگر ولتاژ از مقدار نامی خود منحرف شود ممکن است باعث صدمه رساندن به تجهیزات سیستم یا کاهش عمر آنها گردد برای مثال گشتاور یک موتور القایئ یک موتور با توان دوم و ولتاژ ترمینالهای آن متناسب است و یا شارنوری که لامپ مستقیماً با ولتاژ آن تغییر می نماید بنابراین تثبیت ولتاژ نقاط سیستم از لحاظ اقتصادی عملی نمی باشد از طرف دیگر کنترل ولتاژ در حد کنترل فرکانس ضرورت نداشته و در بسیاری از سیستم ها خطای ولتاژ در محدوده 5% تنظیم می شود. توان راکتیو مصرفی بارها در ساعات مختلف در حال تغییر است لذا ولتاژ و توان راکتیو باید دائماً کنترل شوند در ساعات پربار بارها قدرت راکتیو بیشتری مصرف می کنند و نیاز به تولید قدرت راکتیو زیادی در شبکه می باشد اگر قدرت راکتیو موردنیاز تأمین نشود اجباراً ولتاژ نقاط مختلف کاهش یافته و ممکن است از محدوده مجاز خارج شود. نیروگاه های دارای سیستم کنترل ولتاژ هستند که کاهش ولتاژ را حس کرده  فرمان کنترل لازم را برای بالا بردن تحریک ژنراتور و درنتیجه افزایش ولتاژ ژنراتور تا سطح ولتاژ نامی صادر می کند با بالا بردن تحریک (حالت کار فوق تحریک) قدرت  راکتیو توسط ژنراتورها تولید می شود لیکن قدرت راکتیو تولیدی ژنراتورها به خاطر مسائل حرارتی سیم پیچ ها محدود بوده و ژنراتورها به تنهایی نمی تواند در ساعات پربار تمام قدرت راکتیو موردنیاز سیستم را تأمین کنند بنابراین در این ساعات به وسایل نیاز است که بتواند در این ساعات قدرت راکتیو اضافی سیستم را مصرف نمایند نیاز می باشد. وسائلی را که برای کنترل توان راکتیو و ولتاژ بکار می روند «جبران کننده» می نامیم.

همانطوری که ملاحظه می شود توازن قدرت راکتیو در سیستم تضمینی بر ثابت بودن ولتاژ و کنترل قدرت راکتیو به منزله کنترل ولتاژ می باشد.

به طور کلی کنترل قدرت راکتیو ولتاژ از سه روش اصلی زیر انجام می گیرد.

1- با تزریق قدرت راکتیو  سیستم توسط جبران کننده هائی که به صورت موازی متصل می شوند مانند خازن- راکتیو کندانسور کردن و جبران کننده های استاتیک

2- با جابجا کردن قدرت راکتیو  در سیستم توسط ترانسفورماتورهای متغیر ازقبیل پی و تقویت کننده ها

3- از طریق کم کردن راکتانس القائی خطوط انتقال با نصب خازن سری

خازنها و راکتورهای نشت و خازنهای سری جبرانسازی غیر فعال را فراهم می آورند این وسایل با به طور دائم به سیستم انتقال و توزیع وصل می شوند یا کلید زنی می شوند که با تغییر دادن مشخصه های شبکه به کنترل ولتاژ شبکه کمک می کنند.

کندانسورهای سنکرون و SVC ها جبرانسازی فعال را تأمین می کنند  توان راکتیو تولید شده یا جذب شده به وسیله آنها به طور خودکار تنظیم می شود به گونه ای که ولتاژ شینهای متصل با آنها حفظ شود به همراه واحدهای تولید این وسایل ولتاژ را در نقاط مشخصی از سیستم تثبیت می کنند ولتاژ در محلهائی دیگر سیستم باتوجه به توانهای انتقالی حقیقی و راکتیو از عناصر گوناگون دارد ازجمله وسایل جبرانسازی غیرفعال تعیین می شود.

خطوط هوائی بسته به جریان بار توان راکتیو را جذب یا تغذیه می کنند در بارهای کمتر از بار طبیعی (امپدانس ضربه ای) خطوط توان راکتیو خالص تولید می کنند و در بارهای بیشتر از بار طبیعی خطوط توان راکتیو جذب می نمایند کابلهای زیرزمینی به علت ظرفیت بالای خازنی، دارای بارهای طبیعت بالا هستند این کابلها همیشه زیر بار طبیعی خود بارگذاری می شوند و بنابراین در تمام حالتهای کاری توان راکتیو جذب می کنند ترانسفورمرها بی توجه به بارگذاری همیشه توان راکتیو جذب می کنند در بی باری تأثیر راکتانس مغناطیس کننده شنت غالب است و در بار کامل تأثیر اندوکتانس نشتی سری اثر غالب را دارد بارها معمولاً توان راکتیو جذب می کنند یک شین نوعی بار که از یک سیستم قدرت تغذیه می شود از تعداد زیادی وسایل تشکیل شده که بسته به روز فصل و وضع آب و هوایی ترکیب وسایل متغیر است معمولاً مصرف کننده های صنعتی علاوه بر توان حقیقی به دلیل توان راکتیو نیز باید هزینه بپردازند این موضوع آنها را به اصلاح ضریب توان با استفاده از خازنها شنت ترغیب می کند معمولاً جهت تغذیه یا جذب توان راکتیو و در نتیجه کنترل تعادل توان راکتیو به نحوه مطلوب وسایل جبرانگر اضافه
 می شود.


دانلود با لینک مستقیم


دانلود پروژه رشته برق - نقش توان راکتیو در شبکه های انتقال و فوق توزیع با فرمت ورد

توان راکتیو و دلایل جبران ساز

اختصاصی از فی موو توان راکتیو و دلایل جبران ساز دانلود با لینک مستقیم و پر سرعت .

توان راکتیو و دلایل جبران ساز


توان راکتیو و دلایل جبران ساز

 

 

 

 

 

 

 

فرمت word>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>.

توان راکتیو و دلایل جبران ساز

که شامل::::::::::::::::::::::::::::

معرفی کانال کنترل توان راکتیو و ولتاژ

کنترل توان راکتیو و ولتاژ

کنترل قدرت توان راکتیو و ولتاژ توسط ترانسفورماتورهای متغیر

تزریق قدرت راکتیو به شبکه

جبران کنندگی بار

جبران کننده ثابت موازی در سیستم بهم پیوسته

جبران کننده های دینامیک

خلاصه الزامات جبران ساز 


دانلود با لینک مستقیم


توان راکتیو و دلایل جبران ساز