فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله رشته مکانیک فرآیندهای جوشکاری مقاومتی Resistance Welding

اختصاصی از فی موو مقاله رشته مکانیک فرآیندهای جوشکاری مقاومتی Resistance Welding دانلود با لینک مستقیم و پر سرعت .

مقاله رشته مکانیک فرآیندهای جوشکاری مقاومتی Resistance Welding


مقاله رشته مکانیک فرآیندهای جوشکاری  مقاومتی	Resistance    Welding

مقاله رشته مکانیک فرآیندهای جوشکاری  مقاومتی    Resistance    Welding با فرمت ورد و قابل ویرایش تعداد صفحات 35

دانلود مقاله آماده

 

فهرست مطالب
عنوان                                        صفحه
سپاسگزاری
فرایندهای جوشکاری                                1
فرایند جوشکاری مقاومتی نقطه ای                        11
اصطلاحات و بهسازی در نحوه جوشکاری نقطه ای     21
جوشکاری مقاومتی غلطکی                             25
اصطلاحات و بهسازی برای جوشکاری مقاومتی غلطکی  28
فرایند جوش جرقه ای                                31
فرایند جوش سربه سر                                32
فرایند جوش تصادمی                                32
نکات ایمنی در جوشکاری و برشکاری              33


دانلود با لینک مستقیم


مقاله رشته مکانیک فرآیندهای جوشکاری مقاومتی Resistance Welding

گزارش کار آموزی رشته مکانیک سیستم الکتریکی خودرو نمایندگی سایپا

اختصاصی از فی موو گزارش کار آموزی رشته مکانیک سیستم الکتریکی خودرو نمایندگی سایپا دانلود با لینک مستقیم و پر سرعت .

گزارش کار آموزی رشته مکانیک سیستم الکتریکی خودرو نمایندگی سایپا


گزارش کار آموزی رشته مکانیک  سیستم الکتریکی خودرو نمایندگی سایپا

دانلود گزارش کار آموزی رشته مکانیک  سیستم الکتریکی خودرو نمایندگی سایپا  بافرمت ورد وقابل ویرایش تعدادصفحات 55

گزار ش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی


این پروژه کارآموزی بسیار دقیق و کامل طراحی شده وجهت ارائه واحد درسی کارآموزی میباشد 

تاریخچه شرکت سایپا 

شرکت سهامی عام ایران در تولید اتومبیل ( سایپا) در سال 1344 در زمینی به مساحت 240 هزار متر مربع ( در حال حاضر فقط مساحت زمین کارخانه مرکزی 415 هزار متر مربع می‌باشد ) و زیر بنایی 20 هزار متر مربع با سرمایه اولیه 160 میلیون  ریال بنام شرکت سهامی تولید اتومبیل سیتروئن ایران تاسیس گردید. در تاریخ 15 اسفند 1345 ثبت و در اواخر سال 1347 به مرحله بهره برداری رسید. این شرکت تولید اولین محصولات خود را که شامل «وانت آکا » و سواری «ژیان » بود با روش  کاملا دستی و بدون بهره گیری از تجهیزات و امکانات مدرن آغاز کرد. تولیدات شرکت بعد از سال 1353 به واسطه استفاده از ابزارهای جدید و مکانیزه شدن برخی از بخشهای   تولیدی ، سیر صعودی یافت و بر تنوع محصولات شرکت نیز افزوده شد بعنوان مثال می توان به تولید خودروهای: مهاریی ، پیکاب در مدلهای معمولی دولوکس و کار اشاره نمود. نام شرکت در اوایل سال 1354 با حذف کلمه سیتروئن از انتهای عبارت فرانسوی آن به «شرکت سهامی ایرانی تولید اتومبیل » به نام اختصاری  (سایپا ) که ما خود از عبارت فرانسوی Annonyme Iranione De Productive Automobile  میباشد ، تغییر یافت . این شرکت در 16 تیرماه 1358 تحت مالکیت دولت در آمده و از 18 آذرماه 1360 تحت سرپرستی سازمان گسترش نو نوسانی صنایع ایران قرار گرفته و بر اساس مصوبه مورخ 1/2/65 هیأت وزیران ، کلیه سهام سرمایه آن به نمایندگی از طر ف دولت جمهوری اسلامی بنام سازمان گسترش و نوسان سازی صنایع ایران منتقل گردید در دی ماه سال 1378 به پیروی از سیاست های مالی دولت جمهوری اسلامی ایران مبنی بر کاهش تصدی دولت و خصوصی سازی شرکتهای دولتی و به موجب تبصره35 قانون بودجه کل کشور باواگذاری بیش از 51 % سهام این شرکت به غیر ، سایپا نیز در زمره شرکتهای خصوصی قرار گرفت امروزه شرکت سایپا با در اختیار داشتن  بیش از80 شرکت تابعه و وابسته بصورت مستقیم و غیر مستقیم ، به گروه خودرو سازی بزرگ با امکان تولید انواع مختلف خودرو تبدیل شده است.  سالمانی شرکت سایپا: 1334 : تاسیس شرکت به نام شرکت سهامی تولید اتومبیل سیستروئن ایران» سالنمای شرکت سایپا:  1344 : تاسیس شرکت به نام شرکت سهامی تولید اتومبیل سیتروئن ایران.  1347 : بهره برداری و شروع فعالیت با تولید انواع مدلهای خودرو «ژیان»(1359 ـ 1347 )  1354: تغییر نام شرکت به «شرکت سهامی ایرانی تولید اتومبیل» و تبدیل شدن به شرکت سهامی عام .  1355 : تغییر«رنو5» در مدلهای سده درب و 5 درب ( 1372 ـ 1355 )  1362: تولید «وانت نیسان» با حجم موتور CC 2000 (1369ـ 1362 )  1369 : تولید«وانت نیسان» با حجم موتور cc 2400 ( در شرکت زامیاد ادامه دارد)  1371 :تولید «وانت نیسان دو کابین» با حجم موتوری cc 2400 (1373 ـ 1371 )  1371 : تولید «رنو 21 » ( 1373 ـ 1371 )  1372 : تولید«پراید کاربراتوری» در مدلهای CD5 ، LX ، GTX ( ادامه دارد) .  1374 : کسب رتبه اول کیفیت در بازار داخلی و تکرار این رتبه در سالهای 1375 ، 1376 ، 1378 .  1377 :دریافت اولین گواهینامه ISO 9001 در صنعت خودروسازی کشور از موسسه QMI کانادا.  کسب گواهینامه بهترین شرکت تولیدی در میان شرکتهای تحت پوشش وزارت صنایع انجام مقدمات عملیات گسترده برای ساخت داخل نمودن قطعات محصولات تولیدی .  1378 : موفقیت در تعمیق ساخت داخل محصولات تا سطح 81 % ارزش CDK پراید و 795 در مورد نیسان اخذ تایید به انطباق مشخصات گازهای خروجی آلاینده با استاندارد ECE 1504 و دریافت لوح سبز تبدیل شدن به یک گروه خودروساز بزرگ با امکان تولید انواع کامل خودرو( (Full Range عرضه متجاوز ار 51 % سهام شرکت به بخش خصوصی .  1379 : تولید سواری « پراید face life » و «پراید انژکتوری» در مدلهای مختلف (ادامه دارد ) . دریافت لوح رتبه اول کیفیت در میان تولید کنندگان وانت در ایران از نیسان ژاپن » دریافت لوح تقدیمی از وزارت صنایع بعنوان واحد نمونه صنعتی کشور .  تامین کلیه قطعات نیسان توسط سازندگان داخلی و توقف خرید CKD نیسان .  1380 : دریافت اولین گواهینامة کیفیت Q59000 در صنعت خودروسازی کشور از  QMI کانادا.  دریافت گواهینامه‌های OHSAS18001 و 14001 ISO (مدیریت ایمنی، بهداشت و زیست محیطی) از موسسه DNV هلند.  بهره برداری از خطوط جدید تولید ( طرح و توسعه ) پروژه‌های رینگ خومشهر، مالبیل و شیشه ایمنی کسب مقام اول در زمینه بهترین عملکرد «سبز» از دومین نمایشگاه محیط زیست شروع تولید محصول «زانتیا» در مدلهای لوکس و سوپولوکس و «کاروان» .  1381 : دستیابی به رشد بی سابقه 64 درصدی در میزان تولید پراید.  انجام مقدمات و تمهیدات لازم جهت واگذاری عملیات فروش وانت نیسان به شرکت زامیاد از ابتدای سال 82 .  تولید آزمایشی خودرو جدید پراید 141 و معرفی آن به بازار.  انجام مقدمات گسترده جهت دریافت گواهینامه Iso 9000;2000 و دریافت آن از موسسه بین المللی DNV در اوایلر سال 82 .        استارت  استارت یک موتور الکتریکی است که انرژی الکتریکی را دریافت کرده به انرژی مکانیکی تبدیل می کند و این نیرو را توسط چرخ دندههای خود به فلایویل منتقل میکند تا موتور خودرو روشن شود موتور استار ت باید بتواندلنگری ایجاد کند که بر نیروی اینرسی (ماند یا ساکن )و اصطکاک موتور سرد غلبه کند  به این دلیل اکثر موتورهای استارت از نوع «سری» و از انواع «کامپالیز» با جریانهای دائم هستند. تمام جریان باتری از سیم پیچهای اصلی و سیم پیچ مغناطیسی آن می گذرد نتیجه آن است که لنگر و نیروی  ترک خیلی زیادی در موتور حاصل می شود. این موضوع از روی این فرمول محاسبه میشود.    در رابطه فوق   فلوی مغناطیسی بر حسب تسلا IA جریان در سیم پیچ اصلی K مقداری ثابتی است که در مورد بارهای کم  هنگامی که IA کم است فلوی متناسب با شدت جریان مغناطیسی که در موتورها ی سریهای IA است ایجاد می کند. برای یک موتور سری لنگر حاصله متناسب با مجذور  شدت جریان است یعنی :    (K  مقداری ثابت است – IAشدت جریان است که از موتور استارت می گذرد، با کم بودن مقاومت سیم پیچ اصلی و مقاومت سیم پیچ میدان مغناطیسی لنگر حاصله از موتور استارت بسیار بالا خواهد بود.) نکته به ازای یک مقدار مساوی شدت جریان یک موتور استارت لنگر کمتری ایجاد خواهد کرد و چون جریان بین سیم پیچ مغناطیسی و سیم پیچ اصلی موتور تقسیم می شود این اتفاق می‌افتد. در صورتی که بار زیاد است تناسب لنگر و شدت جریان را نمی توان  از رابطه ای    بدست می آورد. استارت از نوع سری بالاترین لنگرش را موقعی که سیم پیچ اصلی آن ثابت باشد تولید می کند و  در این زمان است که می تواند لنگر مورد نیاز ما را تامین کند. اختلاف پتانسیل دو سری باتری Vbtمیباشد و به مصرف یک موتور سری با مشخصات زیر می رسد «مقاومت سیم پیچ الکتریکی   مقاومت سیم پیچ اصلی   نیروی محرکه ایجاد شده به وسیله موتور ES است.» هنگامی که سیم پیچ اصلی موتور می چرخد، میدان مغناطیسی را قطع میکند و یک نیروی محرکه خوب حاصل شده که در جهت عکس پتانسیل باتری است. این نیروی ضد محرکه متناسب است با حاضلرب   در دوران سیم پیچ در دقیقه:   نیروی ضد محرکه متناسب است با سرعت سیم پیچ اصلی و در حالت خطی موقعی که این سیم پیچ ثابت است برابر صفر خواهد بود با استفاده از قانون «کیرشهف» به این ترتیب میتوان نوشت : Vbt = Es + Ia   - قانون اول کیرشهف : مجموع جمع جبری تمام افت  پتانسیلهای یک مدار بسته در یک جهت مساوی مجموع جبری تمام اضافه پتانسیلهاست. -    قانون دوم کیرشهف : مجموع جبری شدت جریانهای منتهی به یک نقطه برابر صفر است: با بکار بردن رابطه بالا و قبول کردن این نکته که    در رابطه   متناسب با IA  میتوان IA  را به دست آورد:   نتیجه میشود IA موقعی حداکثر است که N  برابر صفر  باشد و همچنین معلوم میشود I زمانی حداکثر است که N  برابر صفر است.  کلید های قطع و وصل موتور استارت:  یک موتور 6 ولتی 600 آمپر جریان از باتری میگیرد. در صورتی که یک موتور 12 ولتی 350 آمپر می گیرد. این مقدار زیاد جریان فقط موقعی می تواند عبور کند که مقاومت سیم پیچهای موتور (استارت ) خیلی کم باشد برای اطمینان از کم بودن مقاومت موتور یک کلید با اتصال خوب لازم است. ساده ترین کلید آن است که از دو میله‌ی موازی با هم استفاده  کنیم. فشار در موقع استارت زدن فنر را  فشرده می سازد و یک خار مسی بین دو میله را طوری قرار می دهد که جریان کاملاً برقرار شود.  در استارتهای جدید این کلید ضمیمه یک کلید قطع و وصل جریان برای شمعها نیز می باشد. این کلید یک  مغزی آهنی را مغناطیسی می کند که آن هم به نوبه ی خود جریان استارت را وصل می کند. ـ برای جلوگیری از عبور جریان مضر در موتور استارت از کلید‌هایی استفاده می کنند که با خلاء کار می کند ، این خلاء از منیفلد گاز تهیه میشود   دستگاه تبدیل سرعت: به علت جریان  شدیدی که بوسیله موتور استارت گرفته میشود تا لنگر زیادی حاصل کند تا این لنگر بر مقاومت غلبه کند و قطعات دوران کننده را به سرعت به حرکت در آورد. بایستی موتور خودرو سرعت بگیرد والا ادامه کار موتور استارت سبب گرم شدن  زیاد از حد آن می‌شود: بنابر این لازم است که لنگر حاصل از موتور استارت به فلایویل که جرم بزرگ و سنگینی می باشد که روی پیرامون خود دنده های ریزی دارد چرخ طیار بوسیله ی اتصال به میل لنگ نیرو را به موتور انتقال میدهند.

فهرست مطالب
عنوان     صفحه
تاریخچه     1
استارت     5
کلید قطع وصل موتور استارت     7
دستگاه تبدیل سرعت     8
مولد برق یا دینام     9
آنالیز دستگاه استارت و دینام     10
قطع کننده جریان معکوس     12
آفتامات     16
دستگاه ایجاد جرقه     19
دستگاه احتراق اجزا     20
کوئل     20
دلکو     21
درب دلکو     24
خازن     25
شمع ها     26
بازدید شمع     27
انواع شمع     28
مگنت     30
تأخیر یا تقدم زمان احتراق     31
ریتارد     32
سیم کشی اتومبیل      34
رنگ های متفاوت  برای شناسایی سیم هاء    36
ادوات داشبورد     36
داشبورد پیکان     40
روش تعویض فیوز دلکو     43
نصب و تنظیم پلاتین     44
طرز تعیین سیلندر شمارة یک و وایره آن     45
مراقبت اساسی سیستم برق     47
فیوز     48
استفاده از فازمتر برای عیب یابی     49
آزمایش آفتامات     49
ردیابی و رفع اشکال تعدادی از ایرادات برقی     51
الکترونیک در خودرو     52
نقش EIS در خودرو     53
سیستم جرقه (EIS )     53
سیستم جرقه (EFI )     54
سنسورها     55


دانلود با لینک مستقیم


گزارش کار آموزی رشته مکانیک سیستم الکتریکی خودرو نمایندگی سایپا

پایان نامه کارشناسی رشته مکانیک مربوط به طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها

اختصاصی از فی موو پایان نامه کارشناسی رشته مکانیک مربوط به طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی رشته مکانیک مربوط به طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها


پایان نامه کارشناسی رشته مکانیک مربوط به طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها

تعداد صفحات پایان نامه: 110 صفحه

دانلود متن کامل پایان نامه مقطع کارشناسی با فرمت ورد word

 

 

 

 

 

 فهرست مطالب

عنوان                                                

فهرست علائم

فهرست جداول

فهرست اشکال

 چکیده

 فصل اول

مقدمه و مطالعات پیشین

1-1 مقدمه و مروری بر تحقیقات گذشته

1-1-1 مدل آیرودینامیکی

فصل دوم

معادلات حاکم و روش حل عددی

2-1 مقدمه

2-2 محاسبات لایه مرزی

2-2-1 محاسبات لایه مرزی آرام

   2-2-2 محاسبات ناحیه گذرا

   2-2-3 محاسبات لایه مرزی درهم

   2-2-4 روش محاسبه درگ

   2-2-5 معیار جدایش

 فصل سوم

الگوریتم و برنامه به همراه ورودی و خروجی های برنامه

3-1 روند محاسبه درگ

 3-2 الگوریتم محاسبات لایه مرزی آرام

3-3 الگوریتم محاسبات ناحیه گذرا

3-4 الگوریتم محاسبات لایه مرزی درهم و ضریب درگ

3-5 برنامه کامپیوتری به زبان فرترن

3-6 ورودی و خروجی های برنامه برای پروفیل های بدنه شماره 1 تا 7

3-6-1 ورودی برنامه برای پروفیل بدنه شماره 1

3-6-2 خروجی برنامه برای پروفیل بدنه شماره 1

3-6-3 ورودی برنامه برای پروفیل بدنه شماره 2

3-6-4 خروجی برنامه برای پروفیل بدنه شماره 2

3-6-5 ورودی برنامه برای پروفیل بدنه شماره 3

3-6-6 خروجی برنامه برای پروفیل بدنه شماره 3

3-6-7 ورودی برنامه برای پروفیل بدنه شماره 4

3-6-8 خروجی برنامه برای پروفیل بدنه شماره 4

3-6-9 ورودی برنامه برای پروفیل بدنه شماره 5

3-6-10 خروجی برنامه برای پروفیل بدنه شماره 5

3-6-11 ورودی برنامه برای پروفیل بدنه شماره 6

3-6-12 ورودی برنامه برای پروفیل بدنه شماره 7

3-6-13 خروجی برنامه برای پروفیل بدنه شماره 6و7

 فصل چهارم

ارائه نتایج و بحث و مقایسه

4-1 مقدمه

4-2 نتایج و بحث برای پروفیل بدنه شماره 1

4-3 نتایج و بحث برای پروفیل بدنه شماره 2

4-4 نتایج و بحث برای پروفیل بدنه شماره 3

4-5 نتایج و بحث برای پروفیل بدنه شماره 4

4-6 نتایج و بحث برای پروفیل بدنه شماره 5

4-7 نتایج و بحث برای پروفیل بدنه شماره 6و7

4-8 نمودارهای مربوط به پروفیل بدنه شماره 1

4-9 نمودارهای مربوط به پروفیل بدنه شماره 2

4-10 نمودارهای مربوط به پروفیل بدنه شماره 3

4-11 نمودارهای مربوط به پروفیل بدنه شماره 4

4-12 نمودارهای مربوط به پروفیل بدنه شماره 5

4-13 مقایسه ضریب درگ

فصل پنجم

نتیجه گیری و پیشنهادات

5-1 نتیجه گیری

5-2 پیشنهاداتی برای تحقیقات آینده

فصل اول

 1-1 مقدمه و مروری بر تحقیقات گذشته

در طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها نکات زیادی مورد توجه قرار می‌گیرد که مهمترین آنها قدرت جلوبرندگی است که به مقدار زیادی بستگی به درگ اصطکاکی روی بدنه ایرشیپ دارد و 3/2 درگ کل را شامل می‌شود. کاهش کوچکی در این درگ باعث صرفه جویی قابل توجهی در سوخت می‌شود و یا می‌تواند باعث افزایش ظرفیت حمل و ابعاد ایرشیپ شود.

اولین بهینه سازی عددی شکل، توسط پارسنز  انجام شده است. روش محاسبه در قالب یک پنل کد می‌باشد که با یک روش لایه مرزی کوپل شده است. زدان  یک توزیع محوری از چشمه و چاه را برای نشان دادن میدان جریان اطراف یک جسم معرفی می‌کند. قدرت (شدت) به صورت خطی روی هر المان طول توزیع می‌شود.

در روند محاسباتی آیرودینامیکی ابتدا یک بدنه دوار با ماکزیمم قطر ثابت و نسبت فایننس  ثابت تعریف می‌شود.پروفیل بدنه و توزیع سرعت جریان غیر لزج توسط روشهای غیر مستقیم حل جریان پتانسیل بدست می‌آید. پروفیل این بدنه باید به گونه‌ای باشد که در جریان یکنواخت موازی با محور بدنه، لایه مرزی دچار جدایش نشود. با این قید، درگ توسط تغییر در شکل پروفیل بدنه کاهش می‌یابد. محدودیت در عدم جدایش لایه مرزی باعث حذف درگ فشاری می‌شود و درگ کلی منحصر به نیروهای ویسکوز در لایه مرزی می‌شود. لایه مرزی به سه ناحیه آرام گذرا  و درهم تقسیم می‌شود. برای محاسبه لایه مرزی آرام از متد توویتس استفاده شده که بر اساس رابطۀ مومنتوم می‌باشد. ناحیه گذرا در محاسبات به صورت یک نقطه در نظر گرفته می‌شود که در آن ضریب شکل به طور ناگهانی از آخرین مقدار در ناحیه آرام به اولین مقدار در ناحیه درهم تغییر می‌کند. از آنجا که محل گذر به عواملی مانند: زبری سطحی، سر و صدا، لرزش و غیره بستگی دارد که کنترل آنها مشکل است در بیشتر تحقیقات این ناحیه را به صورت دلخواه بین سه تا ده درصد طول بدنه در نظر می‌گیرند.

محاسبات لایه مرزی مغشوش بر اساس یک روش ساده انتگرالی معادله مومنتوم بنا شده است، که توسط شینبروک  و سامنر  برای جریان با تقارن محوری بدست آمده است. از آنجا که لایه مرزی مجاز به جدایش نیست درگ از نقصان مومنتوم در انتهای لایه مرزی محاسبه می‌شود.

حل این مسأله در ساخت اژدرها، زیر دریائی‌ها و ایرشیپ‌ها مورد استفاده قرار می‌گیرد. بعضی از این گونه‌ها پروفیل بدنه را به صورت یک یا دو چند جمله‌ای از درجات مختلف نشان می‌دهند و شامل پارامترهایی مانند شعاع در دماغه و انتهای دم محل نسبی قطر ماکزیمم و شعاع طولی در آن نقطه و شیب دم هستند. بوسیله تغییر در بعضی یا همه این پارامترها در شکلهای مختلف درگ کاهش یافته است. دیگران سعی کرده‌اند که مستقیما از کپی پروفیل بدنه ماهی‌های پرسرعت و پرندگان این کار را دنبال کنند. نتیجه تمام این تلاشها منجر به طبقه بندی بدنه هایی با درگ پایین شده است و گرچه از نظر شکل متفاوت هستند ولی ضریب درگهایی خیلی شبیه به هم دارند این بدنه‌ها در شکل 1-1 آمده است.

1-1-1 مدل آیرودینامیکی

جریان اطراف بدنه ایرشیپ با زاویه حمله صفر را به کمک روش سوپر پوزیشن بر روی یک سری توزیع چشمه و چاه که روی محور بدنه و بصورت المانهایی بطول و با توزیع شدتی که توسط یک پاره خط مستقیم و روی المان قرار دارد تخمین می‌زنیم.

خط محوری چشمه و چاه به 20 المان با طول مساوی و در نتیجه به 21 نقطه انتهایی تقسیم می‌شودکه هر المان توزیع شدت خطی دارد (شکل1-3).با مشخص کردن شدت‌ها در 21 نقطه انتهایی توزیع شدت در همه جا تعریف شده است. پروفیل بدنه بوسیله ی تغییر در مقدار شدت این 21 نقطه انتهایی تغییر می‌کند. ترکیبات جدیدی از این 21 شدت تولید می‌شود که در قالب پایان نامه کارشناسی ارشد رضا حسن زاده ارائه شده است. ضریب درگ با استفاده از محاسبات لایه مرزی در نزدیک سطح بدنه بدست می‌آید که   محاسبات لایه مرزی آرام و درهم و همچنین ناحیه گذرا که در این تحقیق بررسی می‌شود بطور مفصل در قسمتهای بعدی شرح داده خواهد شد.

این بدنه جدید به عنوان مبنا قرار می‌گیرد و می‌تواند در یک پروسه ی تکاملی بهینه سازی شود تا به پروفیل با کمترین درگ دست یابیم.در چهل سال اخیر سیستم‌های حل مسأله ی بهینه سازی که بر اساس تکامل و وراثت بنا شده‌اند مورد توجه قرار گرفتند،استراتژی تکامل ریخنبرگ]6 [یکی از این روش‌هامی‌باشد.روش قدرتمند دیگری که بر پایه تکنیک‌های هوش مصنوعی می‌باشد و قابل استفاده در فضا‌های عملکرد بزرگ و توابع چند بعدی و چند وضعیتی (دارای چندین می‌نیمم)و غیر خطی می‌باشد، روش الگوریتم ژنتیک است.

فصل دوم

معادلات حاکم وروش حل عددی

2-1 مقدمه

مقاومت ویسکوز بدنه اغلب از حل لایه مرزی محاسبه می‌شود که برای حل لایه مرزی نیاز به دانستن توزیع سرعت در لبه لایه مرزی می‌باشد که از حل جریان پتانسیل بدست می‌آید. لایه مرزی به سه قسمت آرام،گذرا و درهم تقسیم می‌شود. براساس معادله مومنتوم در شرایط جریان پایدار،دوبعدی،تراکم ناپذیر وویسکوز با گرادیان فشار در جهت x داریم.

-2-2 محاسبات ناحیه گذرا

پیش بینی تئوری ناحیه‌ای که گذر از لایه مرزی آرام به درهم رخ می‌دهد، به عنوان یکی ازمسائل پیچیده و مشکل در مکانیک سیالات می‌باشد زیرا ناحیه گذرا به فاکتورهای زیادی مــانند سروصـدا،لرزش، محیـط، زبری سطحی بدنه وگرادیان فشار سطحی بستگی دارد که تعیین اثرات آنها روی ناحیه گذرا مشکل است. اولین تحقیقات جدی در این زمینه در اواخر قرن نوزدهم وتوسط رینولدز صورت گرفت.تحقیقات دیگری توسط گرانویل، کربتری صورت گرفت و به خاطر ناتوانی این متد‌ها در بیان تاثیرات سطح بدنه ومحیط روی پدیده گذر تعدادی از محققان به صورت دلخواه ناحیه گذرا را بین سه تا ده درصد طول بدنه از دماغه در نظرگرفتند که در این روش نیز از همین تجربه استفاده شده است. ناش این ناحیه را به صورت یک نقطه ودرسه درصد طول بدنه فرض کرده است. در ناحیه گذرا چند تغییر اساسی در لایه مرزی رخ می‌دهد.این تغییرات به صورت تغییر در ضخامت جابجایی و ضخامت مومنتوم نشان داده می‌شودکه منجر به کاهش ضریب شکل می‌شود. باجایگزین کردن ناحیه گذر به صورت یک نقطه ناش توانست روش مفیدی برای محاسبه مقادیر و در آغاز لایه مرزی آرام بدست آورد.مقدار در طول ناحیه گذر تغییر نمی‌کند در حالیکه مقدار در شروع لایه مرزی درهم از رابطه تعادلی ناش بدست می‌آید.


دانلود با لینک مستقیم


پایان نامه کارشناسی رشته مکانیک مربوط به طراحی بدنه ایرشیپ‌ها و زیر دریائی‌ها

پروژه مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی

اختصاصی از فی موو پروژه مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی دانلود با لینک مستقیم و پر سرعت .

پروژه مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی


پروژه مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی

** دانلود متن کامل پایان نامه با فرمت ورد  word در 76 صفحه **

پروژه رشته مهندسی مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی

عنوان پروژه:

بررسی دو نوع خوردگی، خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی

 

  

 

چکیده

این تحفیق در دو بخش ، بخش اول به بررسی خوردگی بین دانه ای1 و دیگری به خوردگی توام با تنش2 در فولادهای زنگ نزن پرداخته شده است .اینکه پدیده حساس شدن چیست و چه عواملی سبب حساس شدن فولاد می شوند مورد بررسی قرار گرفته است . همچنین به برخی از راههای عمومی پیشگیری از مستعد شدن فولادها برای خوردگی بین دانه ای اشاره شده است. در مورد خوردگی تنشی هم فاکتورهای اثر گذار در این پدیده آورده شده است . در پایان هربخش تحقیقات انجام گرفته در آن زمینه مورد مطالعه قرار گرفته و نتایج آنها جمع بندی[1] شده است.

 

 

مقدمه

فولادهای زنگ‌نزن اوستنیتی به علت دارا بودن خواص مکانیکی مناسب و مقاومت عالی به خوردگی، کاربردهای فراوانی در صنایع مختلف دارند. اگر چه حالت کارشده (Wrought) این فولادها، مقاوم به خوردگی است، اما حالت جوشکاری شده آن ممکن است مقاوم به خوردگی نباشد. سیکل حرارتی ناشی از جوشکاری و یا عملیات حرارتی تنش‌زدایی که بر فولاد اعمال می‌شود، ممکن است باعث رسوب فاز کاربید کروم در مرز دانه‌های فولاد، در منطقه متأثر از جوش بشود. نتیجه این فرایند، کاهش غلظت عنصر کروم در مناطق چسبیده به رسوبها است که ممکن است این اختلاف غلظت در ترکیب شیمیایی، باعث از دست رفتن مقاومت فولاد به خوردگی بشود و فولاد به نوعی خوردگی به نام "خوردگی بین دانه‌ای" حساس بشود. اگر فولاد تحت این شرایط، در محیط سرویس قرار بگیرد، مناطق حساس شده، خورده می‌شوند و در نهایت، قطعه دچار شکست ناشی از خوردگی خواهد شد.

طبق آمارهای موجود، سهم عمده‌ای از شکست قطعات در صنایع، شکست ناشی از خوردگی می‌باشد که قسمتی از آن نیز به خوردگی بین دانه‌ای مربوط می‌شود. در نتیجه، با توجه به اهمیت موضوع، هنگام انتخاب فولاد، باید از مقاومت به خوردگی بین دانه‌ای فولاد مورد نظر، بعد از اتمام پروسه‌های ساخت، اطمینان حاصل نمود.

خوردگی بین دانه‌ای، اولین بار حدود 75 سال پیش شناخته شد. از آن موقع به بعد، تحقیقات فراوانی به منظور شناخت بهتر این پدیده و روشهای جلوگیری از آن صورت گرفت. در طول این مدت، در عملیات تولید فولاد و روشهای جوشکاری آن، تغییرات قابل ملاحظه‌ای اتفاق افتاده است. با این همه، کماکان این سئوال مطرح است که هم اکنون نیز در استفاده از این فولادها، با پدیده خوردگی بین دانه‌ای روبرو می‌شویم یا خیر؟

نتیجه تحقیقات فراوان انجام شده در سالیان گذشته و یافته‌های محققان در زمینه مقابله با این پدیده در این گزارش آورده شده است. شرایط ترکیب شیمیایی، روشهای جوشکاری، عملیات حرارتی و شرایط محیطی که تحت آن خوردگی بین دانه‌ای می‌تواند اتفاق بیفتد، مشخص شده و روشهای جوشکاری برای حداقل کردن این پدیده، معرفی شده است.  

قسمتی از این گزارش به پدیده Knife Line Attack و مکانیزم تشکیل و روش‌های جلوگیری از آن اختصاص دارد. Knife Line Attack  نیز نوعی خوردگی موضعی است که مکانیزم آن با مکانیزم خوردگی بین دانه‌ای تفاوت دارد و در فولادهای تثبیت شده اتفاق می‌‌افتد، ولی به علت شباهت به خوردگی بین دانه‌ای، در بعضی مراجع، نوعی از خوردگی بین دانه‌ای در نظر گرفته می‌شود.

 1-1-    تعریف خوردگی

 به تغییراتی که در نتیجة واکنش‌های شیمیایی یا الکتروشیمیایی مواد با محیط اطراف آنها ایجاد شده و باعث تخریب تدریجی قطعات می‌شود، خوردگی گفته می‌شود. خوردگی، یک واکنش نامطلوب است که سبب جدا شدن تدریجی اتمها از سطح قطعات و تخریب آنها می‌شود که در نهایت باعث شکست قطعه شده و خساراتی را بوجود می‌آورد ]1[.

سرعت فعل و انفعالات خوردگی به عواملی مانند درجه حرارت و غلظت محیط اثرکننده بستگی دارد. البته عوامل دیگری نیز مانند تنش مکانیکی (Stress) و فرسایش (Erosion) می‌تواند به خوردگی کمک کند ]1[.

پدیده خوردگی، در اغلب فلزات و آلیاژهای آنها ظاهر می‌شود زیرا اغلب فلزات و آلیاژها تمایل به ایجاد ترکیباتی با اتمها یا مولکولهایی از محیط اطراف خود که تحت شرایط موجود از لحاظ ترمودینامیکی پایدار است، دارند. فقط تعداد کمی از فلزات مانند طلا یا پلاتین، تحت شرایط معمولی پایدار هستند و تمایلی به ایجاد واکنش با محیط اطراف ندارند ]1[.

در ادامه این فصل به تشریح برخی از خوردگی‌های مرسوم پرداخته می‌شود.

 1-2-   خوردگی الکتروشیمیایی

 متداولترین نوع خوردگی، خوردگی الکتروشیمیایی است. این نوع خوردگی غالباً در محیط آبی که شامل یونهای نمک محلول است رخ می‌دهد. بنابراین آب حاوی یونها، از مایعات الکترولیتی محسوب می‌شود که محیط مناسبی برای انجام بیشترین واکنشهای خوردگی است. برای درک بهتر خوردگی الکتروشیمیایی، در ذیل، به تشریح واکنشهای الکتروشیمیایی پرداخته می‌شود ]1[.

موقعی که قطعة فلزی، در مایع الکترولیتی (مانند HCl) قرار گیرد، اتمهای فلز در اسید حل می‌شوند یا به عبارتی، توسط اسید خورده می‌شوند. بدین صورت اتمهای فلز طبق واکنش ، به صورت یون، از فلز جدا می‌شوند و داخل الکترولیت قرار می‌گیرند. به این ترتیب مدار الکتریکی در سیستم (بین فلز و الکترولیت) برقرار می‌شود. مطابق شکل 1-1 این سیستم دارای 4 جزء است:

  • آند: الکترونها را به مدار داده و یونهای فلزی از آن جدا می‌شوند و آند زنگ می‌زند.
  • کاتد: الکترونها را می‌گیرد.
  • اتصال الکتریکی: به منظور جریان الکترونها از آند به سمت کاتد و ادامه واکنش بین آند و کاتد برقرار می‌شود.

الکترولیت مایع: که باید با آند و کاتد در تماس باشد. الکترولیت هادی بوده و مدارالکتریکی را کامل می‌کند. الکترولیت‌ها، وسیلة حرکت یونهای فلزی را از سطح آند به سمت کاتد تأمین می‌کنند


دانلود با لینک مستقیم


پروژه مکانیک – خوردگی بین دانه ای و خوردگی توام با تنش در فولادهای زنگ نزن آستنیتی

پایان نامه رشته مکانیک درباره نیروگاه گاز

اختصاصی از فی موو پایان نامه رشته مکانیک درباره نیروگاه گاز دانلود با لینک مستقیم و پر سرعت .

پایان نامه رشته مکانیک درباره نیروگاه گاز


پایان نامه رشته مکانیک درباره نیروگاه گاز

  پایان نامه رشته مکانیک درباره نیروگاه گاز  با فرمت ورد (دانلود متن کامل پایان نامه)

 

 

 

مقدمه

امروزه با توسعه روزافزون صنعت نیروگاه وتولید برق وبا توجه به این نکته که اکثریت دانشجویان مهندسی و…ویا حتی فارغ التحصیلان دراین رشته ها موفق به بازدیدکاملی از نیروگاه وسیستم کاری و نحوه عملکرد سیستمهای موجود در نیروگاه نشده اند،وبا توجه به سابقه کاری که من در نیروگاه جنوب اصفهان درزمینه نصب تجهیزات مکانیکی وغیره داشته ام ،لازم دانسته ام که برای اشنا کردن دانشجویانی که علاقه به نیروگاه وسیستم عملکردآن دارند،اطلاعات وتصاویری راجمع آوری نموده ودرقالب این پروژه(که معرفی و بررسی بخشهای مختلف نیروگاه گازی است.)ارایه دهم.که من گرد آوری این مطالب را در قالب 10فصل بیان نموده که فصل اول آن رابابیان کدهای شناسایی آغازکرده که درفصلهای بعدی اگرازاین کدها استفاده شده بود ،نا مفهوم نباشد . در فصل دوم تشریحی کلی نیروگاه از نوع پیکر بندی ،جا نمایی ،سوخت و…را بیان کرده و در فصل سوم اطلاعاتی عمومی در مورد قطعات توربین گاز وابعاد ووزن و…را بیان کرده ام ودر فصل چهارم توربین گاز ،نحوه هوادهی ،احتراق و…را تشریح کرده ودرادامه در فصل پنجم سامانه های مختلف از قبیل هوای ورودی آتش نشانی سوخت گاز ،گازوییل و…را بیان نموده که برای خواننده قابل فهم باشد که این هوا چه طور وارد ،چه گونه احتراق صورت گرفته و چه مراحلی بایستی انجام شود تا برق تولیدشودودر فصل ششم نحوه کنترل دمای توربین را شرح می دهیم ودر فصل هفتم مجرای هوای ورودی ،سرعت ، عایق صدا ونحوه تمیز کاری و…را تشریح کرده ودر فصل هشتم سیستم خروجی گازهای حاصل ازاحتراق(مجرای واگرای اگزوز )و…را توضیح داده ودر فصل نهم انواع ابزارهای عمومی وتخصصی را بیان کرده که بیشتر در زمینه تعمیرات ازاین ابزارآلات استفاده می شود ودر فصل دهم منابعی که من توانستم به آنها دسترسی پیدا کنم و بتوانم این مطالب را گرد هم آورم،بیان نموده ام که در پایان هدف و نتیجه ای که من از این پروژه داشتم که سعی خود را می کنم تا به آن هدف نزدیک شوم ؛این است که دانشجویان و…با آشنایی و استفاده از این پروژه بتواند ابهامات خودرا در زمینه ،حداقل آشنایی با نیروگاه گازی و نحوه عملکرد آن بر طرف کند که درهنگام حضور در نیروگاه حتی مرتبه اول دارای پیش زمینه ای بوده باشند که (سر در گمی هایی را که ممکن است با دیدن نیروگاه برایشان بوجود آید را به حداقل برسانند.)

در پایان ازکلیه همکاران درنیروگاه جنوب اصفهان و نیروگاه طوس مشهد واساتیدمحترم دردانشگاه آزاداسلامی واحدشهرمجلسی که درگردآوری وارایه این پروژه من را همیاری کردند کمال تشکر و قدر دانی را دارم .      

 

 

فصل اول

کد شناسایی KKS

مقدمه

KKS مخفف عبارت آلمانی “Kraftwerk Kennzeicen System” به معنای سیستم شناسایی نیروگاه می باشد.

KKS به منظور شناسایی اجزاء نیروگاه و سیستمهای کمکی به کار می رود. این روش کد گذاری توسط بهره برداران نیروگاههای آلمان و کارخانه های سازنده توسعه پیدا نمود و اینک برای تمامی نیروگاهها بکار گرفته می شود.

در این جزوه آن بخش از KKS تشریح شده است که مربوط به توربینهای گازی و سیستمهای اضافی آن می باشد. اجزاء سیستمهای اضافی کد گذاری شده اند، اما همه اجزاء توربین نظیر پره های کمپرسور و توربین یا flametube های محفظه احتراق کد گذاری نشده اند. کدهای شناسایی مربوط به طراحی سیستم نمی باشد بلکه به منظور نشان دادن محل قرار گیری قطعه در یک سیستم می باشد.

ساختار کد شناسایی

سیستم شناسایی KKS مشتمل بر حروف و اعداد میباشد.

مفاهیم حروف استفاده شده از سیستم KKS استخراج شده و اعداد توسط آنسالدو تعریف شده اند.

معانی :

3: (کلید کارکرد F0)                         کد شناسایی یک واحد در یک نیروگاه چند واحدی .

MB : (کلیدهای کارکرد F2+F1)       تمامی قسمتهای توربین گاز کد “MB” دارد.


دانلود با لینک مستقیم


پایان نامه رشته مکانیک درباره نیروگاه گاز