فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پروژه کامل درباره مبدل های حرارتی - مکانیک

اختصاصی از فی موو دانلود پروژه کامل درباره مبدل های حرارتی - مکانیک دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه کامل درباره مبدل های حرارتی - مکانیک


دانلود پروژه کامل درباره مبدل های حرارتی - مکانیک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:132
فهرست و توضیحات:

مقدمه

فصل اول

فصل دوم

اهداف و نیازمندیهای کلی

لولهها

پوسته ها و پوشش های آنها

بافل ها و صفحات نگهدارنده آنها

واشرها

صفحات نگهدارنده لوله ها

قسمت های انعطاف پذیر پوسته

کانال ها، روکش ها و درپوش ها

نازل.ها

فلنج ها و پیچ های انتهایی

نتایج

پیشنهادات

مراجع

 

مقدمه

مبدل حرارتی یکی از اجزای مهم سیستم های تبدیل انرژی، صنایع شیمیایی، نفت، فولاد، چوب و کاغذ، غذایی و غیره می باشد. لزوم صرفه جویی در مصرف انرژی و جلوگیری از اتلاف انرژی و توجه به مسائل آلودگی محیط زیست اهمیت نقش مبدل حرارتی و طراحی بهینه آن را روشن تر میسازد. با رونق کامپوترهای شخصی در بازار و ظهور سوپر کامپوترها در مراکز تحقیقاتی و علمی، فرایند طراحی مبدل های حرارتی نیز تحولاتی را طی کرده است.

در این مقدمه معیارهای طراحی مبدل های حرارتی برای طراحی کامل مبدل های حرارتی در جهت رشد و توسعه این طراحی ها بیان خواهد شد.

هر گونه بحث در مورد فرآیند طراحی مبدل های حرارتی بایستی مبتنی بر شناسایی و درک معیارهایی باشد که عملکرد مبدل با توجه به آن معیارها سنجیده می شود. بیان این معیارها کار ساده‌ای است ولی مشکل وقتی بروز می کند که طراح یا مشتری بخواهد آنها را در موارد خاص اعمال کند. موارد زیر در مورد معیارهای طراحی مبدل ها به ترتیب تقریبی اهمیت آورده شده است.

اولاً مبدل های حرارتی را از لحاظ نوع کاربرد به دو دسته کلی می توان تقسیم نمود. فلسفه و روش طراحی و ساخت هر یک از این مبدل ها متفاوت است. بی شک بسیاری از مبدل های حرارتی به صورت انبوه تولید می شوند. این قبیل مبدل ها مانند رادیاتور اتومبیل، اواپراتور یخچال، دستگاههای تهویه مطبوع، خنک کن روغن، دیگ آب گرم و غیره در مقیاس خیلی وسیع ساخته می شوند. بهترین روش طراحی این دسته از مبدل ها آن است که نمونه های مختلفی از آنها ساخته شود و تحت شرایط عملکرد مختلف مورد آزمایش قرار گیرند تا طرح بهینه از نظر فنی و اقتصادی معلوم گردد. هزینه های مربوط به این نمونه سازی و آزمایشات به دلیل منافع اقتصادی ناشی از تولید انبوه جبران خواهد شد.

در مقابل، مبدل های حرارتی دیگری در صنایع شیمیایی و پتروشیمی و نفت و فولاد و غیره پیدا می شوند که از هر نوع فقط یک عدد(و یا تعداد معدودی به صورت سری یا موازی) مورد نیاز هستند، که هیچ راهی برای آزمایش آنها نیست مگر آنکه در کارخانه نصب شده و مورد بهره برداری قرار گیرند. اغلب این مبدل های حرارتی در شرایطی به کار خواهند رفت که دبی سیالات، ترکیب شیمیایی و خواص فیزیکی و مشخصات رسوب زائی آنها دقیقاً معلوم نیستند و روز به روز تغیر میکنند. مسلماً این موارد مستلزم دقت بیشتر در فرایند طراحی و اطمینان بیشتر از موفقیت طرح خواهد بود.

اولین معیار آن است که مبدل حرارتی نیازهای فرآیند مورد نظر را تأمین کند. یکی از این نیازها عبارت است از انتقال حرارت کافی بین دو سیال در چهارچوب افت فشار مجاز هر سیال. مبدل حرارتی باید با توجه به تشکیل رسوب روی سطوح آن، تا زمان تعمیر برنامه ریزی شده این توانایی را داشته باشد. لازم به ذکر است که در اولین مرحله از طراحی با کمبودهای زیادی مواجه هستیم. مثلاً خواص ترموفیزیکی سیالات به ندرت دقیقاً معلوم هستند، روابطی که برای طراحی به کار میروند معمولاً تجربی بوده و از جامعیت کافی برخوردار نیستند، محدودیت های فضا باعث محدودیت هایی در ابعاد مبدل می شوند، شرایط واقعی عملکرد سیالات روز به روز تغیر می کنند و بالاخره اثر رسوب سیالات فقط به طور حدسی وارد محاسبات شده و در حقیقت با زمان تغییر میکند. در این مرحله از طراحی اطلاعات کافی از سایر اجزا در دست نیست تا بتوان یک تجزیه و تحلیل کمی به عمل آورد. در نتیجه طراح باید با انتخاب ضرائب اطمینان مناسب و در نظر گرفتن انعطاف پذیری لازم در عملکرد مبدل حرارتی احتمال موفقیت طرح را افزایش دهد.

معیار دوم آن است که مبدل حرارتی در مقابل عوامل نامطلوبی که از محیط بر آن تحمیل می شود مقاومت کند. مهمترین عوامل تنش های مکانیکی است، نه تنها در شرائط کارکرد عادی بلکه تنشهای باشی از حمل و نقل، نصب، راه اندازی، خاموشی و موارد خاصی از قبیل اتفاقات ناگوار غیر قابل پیش بینی مانند زلزله و غیره. تنش های مکانیکی دیگری نیز ناشی از لوله کشی ها و تغییرات درجه حرارت حالت دائم و گذرای سیالات نیز بایستی در نظر گرفته شوند. مبدل باید در مقابل خوردگی سیالات و محیط مقاوم باشد. این موضوع گرچه به انتخاب صحیح مواد مربوط می شود ولی روی طراحی مکانیکی نیز بی تأثیر نیست. مبدل بایستی حتی الامکان در مقابل تشکیل رسوب نیز مقاوم باشد.

نقش طراح در این رابطه حداکثر نگاه داشتن سرعت های سیالات است، البته تا جایی که افت فشار مجاز، ارتعاشات و مسائل سائیدگی[1] اجازه می دهد. همچنین ملحوظ داشتن این نکته که سطوح مبدل برای تمیز کردن رسوب ها قابل دسترسی باشند.

معیار سوم مربوط به تعمیر و نگهداری مبدل حرارتی است، یعنی ساختمان مبدل طوری انتخاب شود که تعمیر کردن آن و تعویض قطعاتی مانند لوله، واشر و غیره که در معرض خوردگی، سائیدگی، ارتعاشات و سالخوردگی قرار دارند امکان پذیر باشد. این نیاز ممکن است بر وضعیت قرار گرفتن مبدل در محل کار(افقی یا عمودی) و تأمین فضای لازم برای کار تعمیراتی در اطراف مبدل و جهت های لوله کشی یا کانال کشی تأثیر داشته باشد.

معیار چهارم که مستقیماً روی معیارهای دوم و سوم اثر می گذارد آن است که طراح بایستی مزایای انتخاب چند مبدل کوچکتر سری یا موازی را نسبت به یک مبدل حرارتی بزرگ در نظر داشته باشد. انتخاب چند مبدل با لوله کشی ها و شیرها و اتصالات مناسب باعث می شود که در صورت بروز عیب در یک مبدل حرارتی به سهولت بتوان آن مبدل را برای تعمیرات لازم از شبکه مبدل ها خارج نمود بدون آنکه اثرات نامطلوب شدیدی روی کل سیستم کارخانه به جای گذارد.

این موضوع در خنک کن ها و کندانسورها دارای اهمیت ویژه ای است. زیرا در فصل زمستان که ظرفیت سرمایش شبکه مبدل ها به دلیل سردی هوا افزایش می یابد می توان تعدادی از مبدل های حرارتی را از مدار خارج نمود تا از سرمایش بیش از حد سیال گرم یا تقطیر شونده جلوگیری گردد. معیار پنجم آن است که هزینه مبدل های حرارتی حداقل باشد. بدیهی است که کاهش هزینه مبدل حرارتی نباید منجربه یک مبدل زیر اندازه غیر قابل اعتماد گردد زیرا ضربه و زیان ناشی از عملکرد بد مبدل حرارتی به مراتب بیشتر از صرفه جویی در هزینه اولیه است. در یک طراحی بهینه اقتصادی بایستی مبدل حرارتی در رابطه با کل سیستمی که مبدل جزئی از آن است در نظر گرفته شود. زیرا یک مبدل حرارتی ممکن است به تنهایی بهینه باشد ولی وقتی که در کل سیستم قرار گیرد منجربه سیستم بهینه نگردد. بالاخره ممکن است محدودیت های جا و مکان، یا حمل و نقل و نگهداری محدودیت هایی روی قطر، طول، وزن یا حجم مبدل حرارتی اعمال کند که همواره بایستی مد نظر باشد.

یک مبدل حرارتی را نباید با این بینش طراحی نمود که اگر برای منظور طراحی شده خوب کار نکرد به منظور دیگری مورد استفاده قرار گیرد. اغلب مبدل های حرارتی برای پروژه هایی در نظر گرفته می شوند که عمر آن پروژه ها بیشتر یا مساوی خود مبدل است. این بینش که مبدل حرارتی مورد نظر زودتر از عمر پروژه مربوطه برای کار دیگری مورد استفاده قرار گیرد تلویحاً به این معناست که بقیه اجزا پروژه متناسب با مبدل طراحی نشده اند. بهتر است تمام اجزای یک سیستم از نظر عمر کارکرد مناسب طراحی ساخته شوند.

این پروژه شامل سه فصل است که در فصل اول دسته بندی مبدل های حرارتی بیان گردیده است. مبدل های حرارتی از نظر ساختمان، تعداد و نوع سیالات، آرایش جریان، حدود درجه حرارت کارکرد و غیره تقسیم بندی شده اند. آشنایی با این دسته بندی ها طراح را در انتخاب مبدل مناسب کمک خواهد کرد. فصل دوم در ارتباط با استاندارد TEMAدر مورد بافل ها و صفحات

نگهدارنده لوله  ها[2] می باشد که کلاس R، C و B مبدل های حرارتی را از دیدگاه استاندارد مکانیکیTEMA مورد نقد و برسی قرار می دهد و در فصل سوم نتایج و پیشنهادات ارائه شده اند که برداشتی از مهمترین موارد ذکر شده در فصل اول و دوم می باشد. در پایان نیز منابع و مراجع ذکر شده اند.

انواع مبدل های حرارتی

همانطور که می دانیم در دنیا استانداردهای مختلفی درباره قطعات و تجهیزات مکانیکی وجود دارد ولی در این پروژه از استاندارد TEMA ( Tubular  Exchanger Manufacturers Association  ) که پرکاربردترین استاندارد در زمینه مبدل های حرارتی است استفاده شده است.

روش نامگذاری مبدلهای حرارتی مطابق با استاندارد TEMA:

در استاندارد TEMA هدقسمت جلویی، پوسته و هد قسمت انتهایی مبدلهای حرارتی مختلف در جدولی که در ذیل آورده شده است گردآوری شده و هر کدام از این قسمتها با یکی از حروف انگلیسی نامگذاری شده اند، حال با توجه به شرایط کاری مورد نیاز و خصوصیات این سه ناحیه از مبدلهای حرارتی ، هر قسمت انتخاب شده و در کنار یکدیگر قرار می گیرند ، به این ترتیب نام مبدل حرارتی مورد نظر با کنار هم قرار دادن حروف مربوط به هر قسمت بوجود می آید.

هد قسمت جلویی مبدل را stationary head گویند که سیال ورودی به لوله وارد این هد      می شود. برای اتصال هدها به مبدل یا از اتصالات پیچ و فلنج استفاده می شود( شکل2) و یا آنها را به بدنه جوش می دهند

در این قسمت انواع مختلف ( هد قسمت جلویی ، پوسته و هد قسمت انتهایی ) و خصوصیات آنها را از نظر استاندارد TEMA بررسی می کنیم.

STATIONARY HEAD:

اتصالات پیچی هزینه را افزایش می دهند ولی در عوض در هنگام تعمیر خارج کردن قطعات را ممکن می سازند. اتصالات جوشی ارزانتر بوده و برای کار در فشارهای بالا استفاده می شوند ولی با استفاده از این نوع اتصال خارج کردن قطعات داخلی ممکن نمی باشد.

 Stationary headها به انواع زیر تقسیم بندی می شوند :

نوع A : در این هد تمام اتصالات بصورت فلنجی می باشد و امکان باز کردن و دسترسی به لوله ها راحت تر است . وقتی سیال ورودی به واحد رسوب را باشد از این نوع هد استفاده می شود. در این نوع هد، cover بر روی هد، هد بر روی Tube sheet و Tube sheet به پوسته[3] پیچ شده است.

نوع B : این نوع هد فاقد cover است و در آن ، هد به Tube sheet و Tube sheet به پوسته پیچ شده است.

این نوع هد در مواردی که سیال تمیز است کاربرد دارد.

نوع C : در این نوع ، Cover به هد پیچ شده و Tube sheet به هد جوش خورده و به پوسته پیچ شده است. اگر سیال ورودی به سیستم رسوب زا نباشد و یا وقتی که فشار سیستم زیاد باشد از این نوع

هد استفاده می کنیم. در این نوع هد، دسته لوله را می توان خارج کرد.

نوع N : در این نوع هد cover به هد پیچ شده ولی Tube sheet به هد و هد به پوسته جوش خورده اند.

کاربرد این نوع هد مانند نوع C می باشد. در این نوع هد دسته لوله را نمی توان خارج کرد.

نوع D : در این هد تمام اتصالات جوشی می باشد و برای کار در فشارهای با لا طراحی شده است.

SHELL:

به بدنه مبدل که بین دو هد آن قرار گرفته پوسته[4] می گویند. تیوبهای مبدل درون پوسته قرار گرفته اند. روی پوسته تعدادی نازل وجود دارد که مسیر ورود و خروج سیال سمت پوسته هستند. تعداد و نحوه قرار گیری نازلها روی پوسته یکی از پارامترهایی است که می توان استفاده از آن نوع پوسته را بر اساس استاندارد TEMA مشخص کرد. ( شکلهای زیر).

این فقط قسمتی از متن پروژه است . جهت دریافت کل متن پروژه ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود پروژه کامل درباره مبدل های حرارتی - مکانیک

دانلود تحقیق کامل درمورد مکانیک خاک

اختصاصی از فی موو دانلود تحقیق کامل درمورد مکانیک خاک دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد مکانیک خاک


دانلود تحقیق کامل درمورد مکانیک خاک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 40

 

-مقدمه :

عمده ترین اساس توسعه فنلاند و اتحادیه اروپا پیشگیری از اتلاف دفع زباله و آشغال در زیر خاک مطابق قانون با خطاب به مردم برای کاهش اسراف (اتلاف) مواد ضروری عموم در مواقع لزوم . دولت فنلاند برای طرح دفع زباله و آشغال در زیر خاک تصمیمی اتخاذ کرد (VNP861/197)که طرح موضع عمومی شورای اتحادیه اروپا با بررسی شورای رهنمود در مورد اتلاف دفع زباله در زیر خاک را تصویب کرد . این طرح اهداف عمده ای را برای سازماندهی به نیازها در بر می گیرد . و طرح دفع زباله طبق قوانین تحت پوشش قرار می گیرد . دستورات جدید برای این طرح ما را به سمتی سوق می دهدکه با وجود مشکلات مالی طبق روشهای امروزی مقرون به صرفه می باشد که دفع هر نوع زباله زیر خاک از اینرهنمودها پیروی دارد که بعد باید در موردشان به بحث پرداخت . ظاهر تمیز آبهایی که در زیرشان زباله دفع شده فقط نتیجه ظاهری ارائه می دهد . زباله ها به محل واگذار می شوند و مسائل زیست محیطی کاهش می یابد گاز از دفع زباله جمع آوری شده یا از سوزاندن زباله حاصل می شود . اگر هیچ کدام از موارد مورد استفاده بازگشت پذیر به طبیعت نباشند تغییرات اساسی در مناظر محیط زیستو اکوسیستم به چشم می خورد . علاوه بر این ، به طور کلی پیدا کردن مواد طبیعی مناسب استفاده مشکل است  ، بنابراین ، مواد دوباره وارد چرخه انسان می شود که این برگشت پذیری در کارخانه ها بسیار پرهزینه است . هدف مدیریت ضایعات منطقه ای پاسخ به این سوالات می باشد . واقعاً چه طور می توان از اتلاف تولیدات جلوگیری کرد ؟ چه طور می توان میزان مضرات ضایعات را کاهش داد ؟ چه طور می توان استفاده از ضایعات اولیه به عنوان ماده و ضایعات ثانویه رابه عنوان انرژی افزایش داد ؟ چه طور می توان مدیریت برای ضایعات تشکیل داد طوری که خطر و ضرری به سلامتی و محیط زیست نرساند ؟

در جنوب unsima  صدور 40 زمین محل دفع زباله هستند که 13 آنها مربوط به شهرداری منطقه ها و 10 آنها مربوط به کارخانجات منطقه ها هستند . در ضمن ، کارخانه ها در منطقه تولید مواد ضایعاتی می کنند که قابل استفاده می باشند که تنها در محل دفع زباله زیرخاک یافت می شوند . هدف این طرح ، ایجاد روش جدید برای دفع زباله و اشغال زیرخاک طوری که جنبه مالی و زیست محیطی آن در نظر گرفته شود . روش می تواند در محل یا منطقه باشد که در فنلاند و اروپا بهتر از دیگر نقاط دنیا به کار برده شده است . روش این چنین خواهد بود : افزایش قیمت مناسب دفع زباله و آشغال زیر خاک بررسی ارائه  خدمات کیفی با هدف دفع زباله  افزایش به کارگیری مجدد محصولات کارخانه ای و جلوگیری از صدور کالا به کشور دیگر بابهای کمتر از بهای عادی کاهش استفاده از میزان مواد طبیعی ، افزایش همکاری بین کارخانجات ، انجمن شهرها و مسئولان ، ایجاد مشاغل ، افزایش محل دفع زباله زیر خاک و بناها باچشم انداز ، هدف دیگر این طرح افزایش روشهایی برای تسهیلات مربوط به حفظ محیط زیست است . این روش دستوراتی برای مطالعه مواد و بررسی مقدماتی دفع زباله و نیز سازماندهی اهداف و نظریات را در بر می گیرد . تشخیص تسهیلات مربوط به حفظ محیط زیست اصلی و حیاتی است . مانند خلبان که بعد از کنترل عملکردهای مراقبتی که در محل دفع زباله Koivissiha انجام داد . مواد مورد استفاده بدنه فیبرگل Metsaserla و بال و دکمه (کلید) خاک Helsingin است . خاکستر خاک به چند دلیل کارآیی دارند ، میزان تولید باید به اندازه کافی باشد چون فعالیت شرکت در همکاری و تحقیق و نیازمند به حل سوالات می باشد .

فصــل اول

خواص سنگدانه‎ها

(1-1)- وزن مخصوص

از آنجا که سنگدانه‎ها عمدتاً حاوی منافذ هم قابل نفوذ و هم غیرقابل نفوذ می‎باشند لذا لازم است معنی عبارت وزن مخصوص دقیقاً تعریف شود.

وزن مخصوص مطلق به حجم مواد جامد منهای حجم کلیه منافذ مربوط می‎شود و بنابراین می‎توان آن را بصورت نسبت وزن مواد جامد، در ارتباط با خلاء، به وزن هم حجم آب مقطر بدون گاز، که هر دو در یک درجه حرارت مشخص شده‎ای تعیین شده باشند، تعریف نمود. لذا برای از بین بردن اثر منافذی که کاملاً احاطه شده و غیرقابل نفوذ می‎باشند لازم است که مصالح بصورت پودر بسیار نرم درآورده شود.

اگر حجم مواد جامد به نحوی در نظر گرفته شود که شامل منافذ غیرقابل نفوذ، ولی نه لوله‎های موئینه، نیز گردد وزن مخصوص منتجه را وزن مخصوص ظاهری می‎گویند. در این صورت وزن مخصوص برابر است با نسبت وزن سنگدانه‎های خشک شده در گرمچال، با حرارت 100 تا 110 درجه سانتیگراد برای مدت 24 ساعت، به وزن آب هم حجم مواد جامدی که شامل منافذ غیرقابل نفوذ نیز باشد. وزن مذکور را با استفاده از ظرفی که می‎توان  آن را به دقت تا حجم معینی پر نمود بدست می‎آورند. لذا اگر وزن نمونه در گرمچال خشک شده ‎D، وزن ظرف پر از آب ‎B و وزن ظرف با نمونه و پر شده با آب برابر ‎A باشد در این صورت وزن آبی که حجم معادل مواد جامد را اشغال می‎کند برابر است با ‎ B – (A – D) پس وزن مخصوص ظاهری برابر است با ‎.

معمولاً محاسبات در رابطه با بتن براساس حالت داخل اشباع و سطح خارجی خشک ‎(S.S.d) سنگدانه‎ها صورت می‎گیرد زیرا رطوبتی که در کلیه منافذ سنگدانه‎ها وجود دارد در واکنشهای شیمیائی سیمان نقش نخواهد داشت و بنابراین می‎توان آن را به عنوان بخشی از سنگدانه‎ها در نظر گرفت. لذا اگر چنانچه وزن سنگدانه‎ها در حالت ‎(S.S.d) برابر ‎C باشد در این صورت وزن مخصوص ظاهری ناخالص آن برابر است با  این وزن مخصوص که اغلب به آسانی تعیین می‎گردد برای محاسبات بازدهی بتن، و یا مقدار سنگدانه‎های لازم برای حجم یعنی از بتن، مورد نیاز است.

وزن مخصوص ظاهری سنگدانه‎ها به وزن مخصوص معدنی‎هایی که دانه‎های سنگی از آن استخراج شده‎اند و هم‎چنین به مقدار منافذ داخل آنها بستگی دارد. اکثر سنگدانه‎های طبیعی دارای وزن مخصوص بین 6/2 و 7/2 می‎باشند.‎]1‎[

(2-1)- وزن مخصوص انبوهی

در دستگاه آحاد متریک وزن مخصوص یک ماده عدداً مساوی جرم ویژه آن است که البته کمیت اخیرالذکر یک نسبت است در حالی که وزن مخصوص برحسب کیلوگرم بر لیتر بیان می‎شود. ولیکن در کارهای بتنی بیان نمودن وزن مخصوص برحسب کیلوگرم بر مترمکعب بیشتر متداول است.

وزن مخصوص مطلق فقط به حجم دانه‎های جداگانه مربوط می‎شود و البته عملاً امکان ندارد که بتوان این دانه‎ها را به خوبی متراکم نمود که فضائی بین آنها وجود نداشته باشد. در مواردی که سنگدانه‎ها عملاً بصورت حجمی پیمانه می‎شوند دانستن وزن سنگدانه‎هائی که پیمانه واحد حجم را پر می‎کنند ضروری خواهد بود. این کمیت «به عنوان وزن مخصوص انبوهی» شناخته می‎شود و از آن جهت تبدیل مقادیر وزنی به مقادیر حجمی استفاده می‎نمایند.

وزن مخصوص انبوهی به میزان تراکم سنگدانه‎ها بستگی دارد و نتیجه می‎شود که برای مصالح با وزن مخصوص معین، وزن مخصوص انبوهی به نحوه توزیع اندازه ذرات و شکل دانه‎ها بستگی خواهد داشت. دانه‎ها هم اندازه را تا حد معینی می‎توان متراکم نمود اما دانه‎های کوچکتر را می‎توان در فضای بین دانه‎های بزرگتر قرار داده و بدین ترتیب وزن مخصوص انبوهی مواد متراکم شده افزایش می‎یابد. شکل دانه‎ها به میزان متنابهی بر درجه تراکمی که می‎توان حاصل نمود مؤثر است.

برای سنگدانه‎های درشت با وزن مخصوص معین، یک وزن مخصوص انبوهی زیادتر به معنی منافذ کمتری که باید با ماسه و سیمان پر شوند خواهد بود و در مواردی آزمایش وزن مخصوص انبوهی به عنوان اساس تعیین نسبتهای مواد متشکله  مخلوط‎های بتن مورد استفاده قرار می‎گیرند.‎]1‎[

 

(3-1)- تخلخل و جذب آب سنگدانه‎ها

تخلخل، نفوذپذیری و جذب آب سنگدانه‎ها بر خواصی از آنها، مانند چسبندگی به خمیر سیمان،  مقاومت بتن در برابر یخ زدن و آب شدن و هم‎چنین بر ثبات شیمیائی و مقاومت در برابر سایش آنها اثر دارند و با توجه به اینکه وزن مخصوص ظاهری سنگدانه‎ها به تخلخل آنها بستگی دارد. در نتیجه بازدهی بتن برای وزن معینی از سنگدانه‎ها نیز تحت تأثیر میزان تخلخل آنها واقع است.

اندازه منافذ داخل سنگدانه‎ها در دامنه وسیعی تغییر می‎کند و بزرگترین آنها به اندازه‎ای می‎باشد که زیر میکروسکوپ و یا حتی با چشم غیرمسلح دیده می‎شود ولی حتی کوچکترین منافذ سنگدانه‎ها عموماً بزرگتر از منافذ ژل در خمیر سیمان می‎باشد. منافذ کوچکتر از 4 میکرون مورد توجه بخصوص می‎باشند زیرا به طور کلی عقیده بر آن است که این نوع منافذ بر دوام سنگدانه‎هائی که در معرض یخ زدن و آب شدن متناوب قرار می‎گیرند اثر  می‎گذارند.

بعضی از منافذ سنگدانه‎ها کاملاً در داخل جسم جامد قرار می‎گیرند و بعضی دیگر در نزدیک سطح واقع شده و به خارج راه دارند. خمیر سیمان به علت لزجتی که دارد نمی‎تواند، به جز در مورد بزرگترین منافذ سنگدانه‎ها، تا عمق زیادی به داخل منافذ دیگر نفوذ نماید. لذا به منظور محاسبه میزان سنگدانه‎ها در بتن از حجم ناخالص سنگدانه‎ها که بصورت توپر در نظر گرفته می‎شوند استفاده می‎نمایند، لیکن آب می‎تواند به داخل منافذ راه یابد و مقدار و روند نفوذ آن به اندازه، تداوم وکل حجم منافذ بستگی دارد.

از آنجایی که سنگدانه‎ها سه چهارم حجم بتن را تشکیل می‎دهند تخلخل سنگدانه‎ها سهم عمده‎ای در کل تخلخل بتن خواهد داشت.

وقتی که کلیه منافذ سنگدانه‎ها با آب پر شده باشند بدین معنی است که سنگدانه‎ها به حالت اشباع ‎(S.S.d) درآمده‎اند. اگر سنگدانه‎ها به این حالت درآمده در هوای خشک آزاد، مثلاً در آزمایشگاه، قرار داده شود، قدری از آب داخل منافذ تبخیر خواهد شد و سنگدانه‎ها کمتر از حالت اشباع ‎(S.S.d) آب خواهند داشت و به این حالت «در هوا خشک شده» می‎گویند. ادامه خشک نمودن سنگدانه‎ها در گرمچال سبب می‎شود که رطوبت داخل آنها به مقدار بیشتری کاهش یابد و زمانی خواهد رسید که هیچ‎گونه رطوبتی در آنها باقی نمانده است، به این حالت سنگدانه‎ها «مغز خشک» می‎گویند. مراحل مختلف در شکل (1-1) ترسیم شده‎اند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد مکانیک خاک

دانلود گزارش کار شرکت هپکو

اختصاصی از فی موو دانلود گزارش کار شرکت هپکو دانلود با لینک مستقیم و پر سرعت .

دانلود گزارش کار شرکت هپکو


دانلود گزارش کار شرکت هپکو

دانلود گزارش کارآموزی شرکت هپکو

نوع فایل Word دانلود انواع تحقیق

تعداد صفحات : 72

فهرست محتوا

  • تاریخچه وروند رشد تکامل شرکت هپکو

شرکت هپکو در سال 1354 شمسی باهدف تولید ماشین آلات راهسازی با سرمایه بخش خصوصی وسازمان گسترش ونوسازی صنایع وبا همکاری شرکت های اینترنشنال، پوکلین، ساکایی، دایناپاک ولوکومو در زمینه مونتاژ محصولات در زمینی به مساحت 90 هکتار در شهر صنعتی اراک، شروع به فعالیت نمود. پس از پیروزی انقلاب اسلامی وبا توجه به سیاستهای دولت جمهوری اسلامی ایران در زمینه خودکفایی، نیار به توسعه وتعمیق فعالیتها در جهت ساخت وتولید ، این شرکت توانست در زمینه های فضای تولیدی ماشین ابزار وتعمیق وتوسعه ساخت به پیشرفتهای چشمگیری نائل گردد. این فهالیتها ابتدا با کپی کاری غلطکها آغاز شد ودر سال 1363 طی یک مناقصه بین المللی قرارداد انتقال تکنولوژی با شرکت لیبهر آلمان برای تولید دونوع بلدوزر، دونوع بیل مکانیکی {هیدرولیکی}، یک نوع گریدر وبا شرکت ولووسوئد برای تولید دونوع لودر منعقد گردید، همچنین به منظور عملی نمودن پروژه طرح توسعه این کارخانه در راستای افزایش ظرفیت تولید در سال 1364 با نظارت سازمان گسترش ونوسازی صنایع قرارداد دیگری با شرکت لیبهر آلمان منعقد گردید…

  • امکانات، تجهزیات وتاسیسات موجود در هپکو 
  • توان عملیات جوشکاری در کارخانه هپکو 
  • توان عملیات رنگ آمیزی قطعات ومحصولات در کارخانه هپکو 
  • طراحی، ساخت ، نصب وراه اندازی سیستم اتوماتیک بازیافت مواد شستشو سالن رنگ 
  • مقدمه: 
  • قسمت شیمیایی: 
  • الف- خط سبک: 
  • مشخصات فنی چربیگیر پودری قلیایی وعملیات چربیگیری 
  • آب کشی: 
  • فسفاته: 
  • فسفاته روی میکروکریستال: 
  • غلظت مواد: 
  • فسفاته آهن: 
  • - ف-شار عملیاتی: 
  • ب- خط سنگین: 
  • قسمت برق وکنترل: 
  • شرح سیستم کنترل: 
  • قسمت مکانیک:
  • معایب رنگ Paint Defect 
  • 1- مقدمه: 
  • 2- عوامل بروز ایراد در رنگ: 
  • 3- معایب رنگ در داخل قوطی یا ظرف محتوی رنگ: 
  • 4- ته نشین یا روسوب گذاری: 
  • 5-گاز دار شدن: 
  • 6-ژل شدن رنگ: 
  • 7-رویه بستن رنگ: 
  • 8- تاول زدگی فیلم رنگ: 
  • 9-تبله کردن فیلم رنگ: 
  • 10- پوست پرتغالی شدن: 
  • 11- سوراخهای چشم ماهی یا کاسه ای شدن: 
  • 12- سوراخ شدن فیلم رنگ: 
  • 13- سینه دادن وشره: 
  • 14- عدم پوشانندگی فیلم رنگ: 
  • 15- خشک نشدن پس از رنگ آمیزی: 
  • 16- سرخ فام پذیری: 
  • 1- سفیدک زدن: 
  • 2- مه گرفتگی فیلم رنگ: 
  • مه گرفتگی 
  • الف- مه گرفتگی بلورین: 
  • ب- مه گرفتگی لاکی: 
  • ج- مه گرفتگی کوره ای: 
  • 19- عدم چسبندگی: 
  • 3- گچی شدن: 
  • 4- کاهش براقیت فیلم رنگ: 
  • 5- زرد شدن فیلم رنگ: 
  • 6- ترک خوردگی رنگ: 
  • 7- چین وچروک شدن فیلم: 
  • 8- اسپری خشک: 
  • 9- فلودینگ وفلوتینگ: 
  • آزمایشات کنترل کیفی رنگ
  • مقدمه: 
  • استاندارد کارخانه ای: 
  • انواع آزمایشات رنگ: 
  • اندازه گیری ویسکوزیته: 
  • دانسیته {چگالی}: 
  • ته نشینی « رسوب گذاری»: 
  • سازگاری با حلال: 
  • دانه بندی: 
  • قدرت پوشانندگی رنگ: 
  • درصد خاکستر: 
  • درصد مواد فرار: 
  • در صد رزین: 
  • مقاومت دوبرابر شده: 
  • اندازه گیری ضخامت فیلم تر رنگ: 
  • 1-استفاده از شانه مخصوص : 
  • 1- استفاده از دستگاه مخصوص: 
  • آزمایشات فیلم خشک رنگ: 
  • چسبندگی: 
  • تست براقیت: 
  • تست مرطوب: 
  • تست خش: 
  • تست مقاومت در برابر ضربه: 
  • آزمایش سختی رنگ: 
  • اندازه گیری ضخامت فیلم خشک رنگ: 
  • آزمایش جامی شدن: 
  • مقاومت رنگ در مقابل سایش: 
  • مقاومت رنگ در تماس با مه نمکی: 
  • راه اندازی دستگاه تست سالت اسپری 
  • 1- آماده سازی اولیه:
  • 1-1 آماده سازی محلول آزمون: 
  • 1-2 آماده سازی هوای فشرده: 
  • 2- راه اندازی دستگاه:
  • 2-1 راه اندازی: 
  • 2-2 شروع آزمون: 
  • 2-3 توقف آزمون: 
  • 3- پرکردن مخزن اشباع: 
  • دستور العمل روزانه کاربر دستگاه تست: 
  • دستور العمل روزانه کاربر دستگاه تست: 
  • گذاشت وبرداشت قطعه: 
  • کنترل های روزانه در مدت انجام آزمون
  • کالیبراسیون 
  • آزمایشگاه شیمی: 
  • آزمایشهای کنترل کیفی برروی مواد مختلف ورودی به کارخانه
  • آزمایشات مربوط به مواد فسفاته: 
  • آزمایش مربوط به مواد چربیگیر: 
  • آزمایشات مربوط به روغن : « تست آب » 
  • وزن مخصوص: 
  • آزمایشات مربوط به لاستیک: 
  • 1- تست سختی ASTMD 2240 : 
  • 2- تست در مجاورت سیالات: 
  • 1- مانایی فشار ASTMD 345 Comperesion : 
  • تست مربوط به ضد یخ: 
  • تست آب صابون: 

دانلود با لینک مستقیم


دانلود گزارش کار شرکت هپکو

جزوه مکانیک سیالات پروفسور کاظم هجرانفر دانشگاه صنعتی شریف

اختصاصی از فی موو جزوه مکانیک سیالات پروفسور کاظم هجرانفر دانشگاه صنعتی شریف دانلود با لینک مستقیم و پر سرعت .

جزوه مکانیک سیالات پروفسور کاظم هجرانفر دانشگاه صنعتی شریف


جزوه مکانیک سیالات پروفسور کاظم هجرانفر دانشگاه صنعتی شریف

این جزوه به صورت دستنویس است.

این جزوه درس مکانیک سیالات پروفسور کاظم هجرانفر استاد دانشکده مهندسی هوافضا دانشگاه صنعتی شریف می باشد که به طور کامل به ارائه مباحث مطرح در این واحد درسی پرداخته است.

این جزوه در 74 صفحه با کیفیت عالی اسکن شده و امیدواریم در جهت کمک به شما عزیزان مورد استفاده قرار بگیرد.


دانلود با لینک مستقیم


جزوه مکانیک سیالات پروفسور کاظم هجرانفر دانشگاه صنعتی شریف

دانلود آزمایشگاه مکانیک خاک

اختصاصی از فی موو دانلود آزمایشگاه مکانیک خاک دانلود با لینک مستقیم و پر سرعت .

دانلود آزمایشگاه مکانیک خاک


دانلود  آزمایشگاه مکانیک خاک

 

تعداد صفحات : 24 صفحه      -     

قالب بندی :  word        

 

 

 

 آزمکانیک خاک

موضوع: آزمایش دانه بندی خاک

وسایل مورد نیاز: 2000 گرم شن- ترازو- الکهای دسته بندی شده- دستگاه لرزاننده.

نحوه انجام کار: ابتدا 2000 گرم شنی را توسط ترازوی دیجیتال کشیده و سپس آن را داخل الک نمره4/3 ریخته البته الکها را از بالا به ترتیب قرار می‌دهیم که عبارتند زا الک نمره 200,100, 60, 50, 40, 20, 16, 10, 4, 4/8.

سپس شن را داخل الکها ریخته (الک رویی) و آن را روی دستگاه لرزاننده قرار می‌دهیم و آن را به مدّت یک دقیقه روش کرد و پس از اطمینان از خوب جدا شدگی دانه‌های شن الکها را برداشته و دانه‌های بوجود بر روی هر الک را با ترازوی دیجیتال وزن می‌کنیم و سپس آن را در داخل جدول قرار می‌دهیم.

درصد رد شوه

درصد مانده روی الک

وزن مانده روی الک

شمارة الک

100

0

-

1

100-7.45=95.55
  1. 45

149g

¾

44.84

47.7

954g

3/8

2.3

42.55

851g

4

0.3

2

40g

10

0.25

0.05

1g

16

0.15

0.1

2g

20

0.1

0.05

1g

40

0.05

0.05

1g

50

0

0.05

1g

60

0

0

0

100

0

0

0

200

 

 

2000g

 

 


آزمکانیک

موضوع: آزمایش هیدرومتری

وسایل مورد نیاز: 50g خاک روشده از الک 200- محلول هگزافسفات سودیم- لوله مندرج آب

نحوة کار: ابتدا   50gخاک را کشیده و از الک نمرة 200 رو می‌کنیم سپس %4 از محلول هگزا فسفات سدیم با مقدار آب در ظرفی ریخته و داخل هم زن قرار داده و هم می‌زنیم سپس مایع را در لوله مندرج ریخته و با اضافه کردن آب حجم آن را به 1000cc می‌رسانیم سپس به همین میزان یعنی 1000cc از آب و محلول هگزا فسفات سدیم در داخل لوله مندرج دیگری ریخته و عنوان محلول شاهد درست می‌شود تا ذرات چسبیده به لوله از آن پاک شود و در طی زمام که در جدول مشخص است این آزمایش انجام می‌شود.

تأثیر رقم تصحیح –R=             

a=1  

 

 


دانلود با لینک مستقیم


دانلود آزمایشگاه مکانیک خاک