2.0 بررسی مقالات و دسته بندی
ساختار یا فرایند شبکه ای دو مرحله ای کلی را به صورتی که در شکل 1 نشان داده شده برای هر مجموعه DMUsn در نظر بگیرید. با به کار بردن نماد های چن و زو و کائو و هوانگ ، فرض می کنیم که هر DMUj (j=1,2,…..,n) دارای ورودی های m Xij (i=1,2,…..,n) برای مرحله ی اول و خروجی های D Zdj (d=1,2,…..,D) آن مرحله است.سپس این ورودی ها تبدیل به خروجی های مرحله ی دوم می شوند و به عنوان معیارهای میانی یا واسطه ای نامیده خواهند شد. خروجی های مرحله ی دوم عبارتند ازy ij r=1,2,…..,s)).
ما به کارایی مرحله ی اول به عنوان e_j^1 و کارایی مرحله ی دوم به عنوانe_j^2 برای هر DMUj اشاره می کنیم. با استفاده از برگشت های ثابت به مقیاس (CRS) مدل DEA چارنز و همکارانش ، ما داریم:
e_j^1= (∑_(d=1)^D▒〖w_d z_dj 〗)/(∑_(i=1)^m▒〖v_i x_ij 〗)
e_j^2= (∑_(r=1)^s▒〖u_r y_rj 〗)/(∑_(d=1)^D▒〖w_d z_dj 〗)
که v_i ، w_d، w ̇_d و u_r همان وزن های غیر منفی شناخته شده هستند. توجه داشته باشید که w_d می تواند با w ̇_d برابر باشد.
چهار نوع مقاله وجود دارند که از رویکردهای مختلف برای مدلسازی DMUs با فرایندهای دو مرحله ای استفاده می کنند. بعضی از این رویکردها معادل هستند.
2.1روش شناسی DEA استاندارد
نوع اول به آسانی از مدل DEA استاندارد استفاده می کند یعنی دو DEA جدا به ترتیب برای دو مرحله ی e_j^1 و e_j^2 به کار گرفته می شود. برای مثال، چلنگریین و شرمن فرایند دو مرحله ای دیگررا در اندازه گیری دقت پزشک توصیف می کنند. مرحله ی اول فرایند کنترل شده ی مدیری است که دارای ورودی هایی مانند پرستاران دیپلمه دارای پروانه ی رسمی، تامین اجتماعی و هزینه های سرمایه ای و ثابت می باشد. این ورودی ها ، خروجی ها یا معیارهای های میانی یا متوسط ( ورودی های مرحله ی دوم ) از جمله روزهای بیماری، کیفیت درمان ، داروهای مصرف شده و سایر موارد را تولید می کنند. خروجی های مرحله ی دوم ( تحت کنترل پزشک ) شامل کمک هزینه های تحقیقی، کیفیت بیماران و کیفیت افراد آموزش دیده هستند. مثالهای دیگر شامل عملکرد شرکت های fortune500(سیفورد و زوی {2}؛ زوی {3}). سکستون و لوئیس {12}مشابه سیفورد و زوی {2} از رویکرد استاندارد DEA استفاده می کند جاییکه در یکی از مدلهای استاندارد DEA آنها، معیارهای میانی در مرحله دوم محاسبه کارایی مورد استفاده قرار می گیرد.
با این حال همانطور که قبلا مورد بحث قرار گرفته است چنین رویکردی Z_dj را در یک حالت هماهنگ در نظر نمی گیرد برای مثال فرض کنید که اولین مرحله دارای کارایی DEA باشد ولی مرحله دوم نباشد. وقتی که مرحله عملکرد خود را از طریق یک مدل DEA ورودی محور با کاهش دادن ورودیهای Z_dj بهبود می بخشد ممکن است Z_dj باعث ناکارآمدی مرحله اول شود.
2.2. روش شناسی تجزیه کارآمدی
مفید است این نکته را خاطرنشان کنیم که با در نظر گرفتن معیارهای کارآیی منفرد e_j^1 و e_j^2 به ترتیب برای مراحل 1 و 2 ، منطقی است که کارایی فرایند کلی دو مرحله ای را به عنوان 1⁄2(e_j^1+e_j^2 ) یا e_j^1 . e_j^2. اگر مدل DEA ورودی محور مورد استفاده قرار بگیرد دراین صورت ما باید این ملزومه را در نظر بگیریم که e_j^1≤1 و e_j^2≤1. تعریف بالا این اطمینان را می دهد که فرایند دو مرحله ای فقط و فقط زمانی کارآمد است که e_j^1=e_j^2=1 .
اگر ما e_j=∑_(r=1)^s▒〖U_r Y_ro/∑_(i=1)^m▒〖v_i x_io 〗〗 را به عنوان کارآیی کلی دو مرحله ای در نظر بگیریم در این صورت ما به نوع دیگری از تحقیق مثل تحقیق کائو و هوهانگ{4} میرسیم که فرایند دو مرحله ای را توصیف می کند که در آن 24 شرکت بیمه غیرعمر از هزینه های عملیاتی و هزینه های بیمه برای ایجاد حق بیمه در مرحله اول و سپس سودهای تعهد شده و سرمایه گذاری شده در مرحله دوم استفاده می کنند همانطور که کائو و هوهانگ{4} بیان می کنند ما داریم e_j^1=e_j^1 . e_j^2 اگر به صورت بهینه ارائه شود ما فرض می کنیم که w_d=w ̃_d.. توجه داشته باشید که چنین تجزیه کارآیی در رویکرد استاندارد DEA و رویکردهای شبکه ای DEA موجود نیست.
2.3. DEA شبکه ای
ما ذکر کردیم که در این مثالهای بالا معیارهای میانی تنها ورودیهای مرحله دوم هستند یعنی هیچ ورودی اضافی مستقلی به آن مرحله وجود ندارد. البته انواع دیگری از فرایندهای دو مرحله ای و حتی DMU های دارای ساختارهای شبکه ای وجود دارند که ممکن است علاوه بر معیارهای میانی دارای ورودیهایی در مرحله دوم باشند. در یک حالت خیلی کلی تر از فرایندهای دو مرحله ای ، کاستلی و دیگران {7} DMU های دارای ساختارهای دو مرحله ای و دو لایه ای را مورد بحث قرار می دهند. ممکن است رویکرد DEA شبکه ای فار و ویتیکر {13} و فار و کروسکوپف {8} و رویکرد DEA شبکه ای slacks محور تون و توستوسی {14و 15} شامل بیشتر از دو مرحله باشد. فوکویاما و وبر {16} یک معیار slacks محور را برای یک فرایند دو مرحله ای با خروجی های بد در نظر می گیرند. اخیرا، چن {17} یک مدل DEA شبکه ای ارائه کرده است که شامل تاثیرات دینامیک در شبکه های تولید است. تعدادی از تحقیقات تجربی از این نوع تکنیک های DEA استفاده کرده اند مراجعه کنید به آوکیران {18} و یو و لی {19}. ما اینها را رویکردهای DEA شبکه ای می نامیم.
رویکردهای DEA شبکه ای مشابهی در فرایندهای دو مرحله ای توصیف شده در شکل 1 مورد استفاده قرار گرفته اند. برای مثال چن و زوی {10} تاثیر استفاده از تکنولوژی اطلاعات را روی عملکرد شعب بانک مورد مطالعه قرار داده اند {20}. چن و زوی {10}و چن و همکارانش {9}تحت فرض مربوط به برگشت های متغیر به مقیاس (VRS)، از طریق یک فرایند دو مرحله ای مدلهای خطی و غیرخطی برای اندازه گیری تاثیر تکنولوژی اطلاعات روی عملکرد شرکت گسترش داده اند. با این حال امتیازهای کارایی مراحل منفردی آنها اطلاعات کافی در مورد عملکرد کلی و اقدامات فرایند دو مرحله ای ارائه نمی کنند.
2.4 رویکردهای بازی – عملی
نوع چهارم رویکرد از مفاهیم نظریه بازیها استفاده می کند این رویکرد از کار لیانگ و همکارانش {5} منشا می گیرد که از DEA برای اندازه گیری زنجیره های عرضه ی دارای دو عضو استفاده می کنند. در کار لیانگ و همکارانش {5}، مفاهیم بازی استاکلبرگ (یا رهبر- دنباله رو ) و بازی مشارکتی در جهت توسعه مدلهایی برای اندازه گیری عملکرد در زنجیره های عرضه مورد استفاده قرار می گیرد. ما باید این نکته را در این مقاله خاطرنشان کنیم که ، مرحله دوم (خرده فروش) نه فقط دارای ورودیهای مرحله اول (تولید کننده) است، بلکه دارای ورودیهای مربوط به خود است که با مرحله اول مربوط نیست یعنی ورودیهای اضافی برای مرحله دوم معرفی می شوند. در نتیجه خواهیم داشت e_j=∑_(r=1)^s▒〖U_r Y_rj/∑_(d=1)^D▒〖W ̃_d Z_dj 〗+∑_(h=1)^H▒〖Q_H X_hj^2 〗〗، که در آن X_hj^2 (h=1,…,H) ورودیهای مرحله دوم هستند که به مرحله اول مربوط نیستند. در این حالت ممکن است بهتر باشد که کارایی کلی را به عنوان 1/2(e_j^1+e_j^2 )، چون e_j^1.e_j^2 به یک مشکل غیر خطی منجر می شود.
ما اشاره کردیم که مدلهای آنها می توانند به صورت مستقیم برای فرایند دو مرحله ای توصیف شده در شکل 1 به کار گرفته شوند، چون هیچ ورودی اضافی دیگری وجود ندارد. X_hj^2 (h=1,…,H) ، ساختار زنجیره عرضه ی دو عضوی آنها مشابه فرایند دو مرحله ای نشان داده شده است. لیانگ و دیگران {6} با استفاده از اصول مدلسازی مشابه لیانگ و دیگران {5} مدلهای مفصلی برای فرایند دو مرحله ای ارائه کرده اند.
در حالی که این مقاله روی فرایندهای دو مرحله ای که فقط دارای معیارهای میانی متصل کننده مراحل است تمرکز می کند، ما ارتباطات بین مدلهای DEA برای فرایندهای دو مرحله ای خاص و برای ساختارهای شبکه ای خیلی کلی را نیز مورد بحث قرار خواهیم داد.
بخش هایی که بعدا ارائه خواهند شد ارتباطات بین چهار رویکرد توصیف شده در بالا بخصوص ارتباط کار لیانگ و همکارانش {5} به کار کائو و هوهانگ {4}، {7}و رویکرد DEA شبکه ای فار و گروسکوپف {8} را مورد بررسی قرار خواهند داد. خاطرنشان می کنیم که از چهار گروه توصیف شده در بالا، ما فقط روی تحقیق مربوط به 2.2، 2.3، و 2.4 تمرکز خواهیم کرد. ما نشان می دهیم که روش های ارائه شده در این سه گروه می توانند به سه دسته، آنهایی که رویکرد بازی مشارکتی یا تمرکزی را دارند، آنهایی که رویکرد بازی استالکبرگ یا تمرکز زدایی شده را اتخاد می کنند و آن دسته که دارای رویکرد DEA شبکه ای هستند تقسیم بندی کنیم.
3. مدل تمرکز یافته
لیانگ و همکاران نشان می دهند که با استفاده از راه کار نظریه ی بازیهای مشارکتی یا کنترل تمرکزی، فرایند دو مرحله ای می تواند به صورت یکی که مراحل به صورت مشترک مجموعه ای از وزن های مطلوب بر عوامل واسطه تعیین شود تا امتیاز کارایی آنها را افزایش دهد. این در مواقعی که تولید کنندگان و خرده فروشان مشترکاً قیمت، مقدار سفارش و غیره را تعیین می کنند تا به بیشترین سود برسند. به عبارت دیگر، روش متمرکز یا مشارکتی به وسیله ی گذاشتن w_d=〖w〗_d در (1)مشخص می شوند و امتیازات کارایی هر دو مرحله به صورت هم زمان بهینه سازی می شود. بهینه سازی می تواند بر اساس افزایش میانگینe_(0 )^1 و e_0^2 در برنامه ی غیر خطی مانند برنامه لیانگ و همکاران، کائو و همکاران باشد. با این حال ذکر شده است که به دلیل فرضw_d=〖w〗_d در (1)، e_(0 )^1 .e_0^2 می شود ∑_(r=1)^s▒〖u_r y_ro 〗/∑_(i=1)^m▒〖v_i x_io 〗. بنابرین به جای بالا بردن میانگینe_(0 )^1 و e_0^2، داریم:
e_0^centralized=Max e_(0 )^1 .e_0^2 ∑_(r=1)^s▒〖u_r y_ro 〗/∑_(i=1)^m▒〖v_i x_io 〗
e_j^1≤1 وe_j^2≤1 وw_d=〖w〗_d (2)
مدل (2) می تواند به شکل برنامه ی خطی زیر در بیاید:
e_0^centralized=Max ∑_(r=1)^s▒〖u_r y_ro 〗
∑_(r=1)^s▒〖u_r y_rj 〗- ∑_(d=1)^d▒〖w_d z_dj 〗≤0 j=1,2,…,n (3)
∑_(d=1)^D▒〖w_d z_dj 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 j=1,2,…,n
∑_(i=1)^m▒〖v_i z_io 〗=1
w_d≥0,d=1,2,…,D; v_i≥0,i=1,2,…,m; u_r≥0,r=1,2,…,s
مدل (3) مدل کائو و هوانگ است و مدل متمرکز در [6] ایجاد می شود. به خاطر داشته باشید که محدودیت های ∑_(r=1)^s▒〖u_r y_rj 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 در مدل کائو و هوانگ تکرار می شود ، زیرا ∑_(r=1)^s▒〖u_r y_rj 〗- ∑_(d=1)^d▒〖w_d z_dj 〗≤0و ∑_(d=1)^D▒〖w_d z_dj 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 ، ∑_(r=1)^s▒〖u_r y_rj 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 را می رساند.
مدل (3) کارایی کلی فرایند دو مرحله ای را می رساند. تصور کنید که مدل (3) ی بالا تنها یک راه حل داشته باشد. بنابرین می توانیم به
e_j^(1,centralized)= (∑_(d=1)^D▒〖w_d^* z_do 〗)/(∑_(i=1)^m▒〖v_i^* x_io 〗)=∑_(d=1)^d▒〖w_d^* z_do 〗 وe_0^(2,centralized)= (∑_(r=1)^s▒〖u_r^* y_ro 〗)/(∑_(d=1)^D▒〖w_d^* z_do 〗) (4)
مانند کارایی های مراحل اول و دوم دست یابیم. اگر مقدار بهینه را برای مدل (3) را به صورت e_0^centralized، مشخص کنیم بنابرین خواهیم داشت
e_0^centralized= e_0^(1,centralized).e_0^(2,centralized).
اگر در ساختمان داخلی کاستلی و همکاران فقط یک لایه را در نظر بگیریم، می توان به تجزیه ی کارایی بالا رسید. بنابرین، روش های کاستلی و همکاران و کائو و هوانگ را می توان به صورت مدل های بازی مشارکتی دید.
همانگونه که در مدل کائو و هوانگ بیان شد، ممکن نیست ضریب تکاثر بهینه از مدل (3) منحصر به فرد باشد. آنها استنتاج بیشترین مقدار قابل دسترسی e_0^(1,centralized) یا e_0^(2,centralized) را پیشنهاد می کنند. در واقع، همانطور که در [6] نشان داده می شود، مدل آنها نیز می تواند برای بررسی e_0^(1,centralized) و e_0^(2,centralized) استفاده شود. بیشترین مقدار قابل دسترسی e_0^(1,centralized) را می توان از طریق
e_0^(1+)=Max ∑_(d=1)^D▒〖w_d z_do 〗
تعیین کرد.
∑_(r=1)^s▒〖u_r y_ro 〗= e_0^centralized
∑_(d=1)^D▒〖w_d z_do 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 j=1,2,…,n (5)
∑_(r=1)^s▒〖u_r y_rj- 〗 ∑_(d=1)^D▒〖w_d z_dj 〗≤0 j=1,2,…,n
∑_(i=1)^m▒〖v_i x_io 〗=1
w_d≥0,d=1,2,…,D; v_i≥0,i=1,2,…,m; u_r≥0,r=1,2,…,s
این، کمترین e_0^(2,centralized) را به بار می دهد یعنی e_0^(2-)=e_0^centralized/e_0^(2+). بیشترینe_0^(2,centralized) می تواند ار طریق برنامه ی خطی زیر محاسبه شود،
e_0^(2+)=Max ∑_(r=1)^s▒〖u_r y_ro 〗
∑_(r=1)^s▒〖u_r y_ro 〗- e_0^centralized ∑_(i=1)^m▒〖v_i x_io 〗=0
∑_(r=1)^s▒〖u_r y_rj- 〗 ∑_(d=1)^D▒〖w_d z_dj 〗≤0 j=1,2,…,n (6)
∑_(d=1)^D▒〖w_d z_dj 〗- ∑_(i=1)^m▒〖v_i x_ij 〗≤0 j=1,2,…,n
∑_(d=1)^D▒〖w_d z_do 〗=1
w_d≥0,d=1,2,…,D; v_i≥0,i=1,2,…,m; u_r≥0,r=1,2,…,s
و سپس کمترین e_0^(1,centralized) را به صورت e_k^(1-)= e_0^centralized/e_0^(2+) محاسبه شود. به یاد داشته باشید که e_0^(1-)= e_0^(1+) است فقط و فقط زمانی که e_0^(2-)= e_0^(2+) باشد. همچنین به یاد داشته باشید که اگر e_0^(1-)= e_0^(1+) یا e_0^(2-)= e_0^(2+) باشد، پس e_0^(1,centralized) و e_0^(2,centralized)منحصرا از طریق مدل (3) تعیین می شوند. اگر e_0^(1-)≠e_0^(1+) یا e_0^(2-)≠ e_0^(2+) باشد، روشی را کشف کنید که بتوانید به تجزیه ی دیگری از e_0^(1,centralized) و e_0^(2,centralized) دست یابید.
جدول 1
شرکت های بیمه ی غیر عمر در تایوان
سود سرمایه گذاری (y2) سود پذیره نویسی (y1) حق بیمه ی اتکائی (z2) حق بیمه های نوشته شده به صورتمستقیم (z1) مخارج بیمه (x2) مخارج عملیات (x1) شرکت DMU
681687 984143 856735 7451757 673512 1178744 تایوان فایر 1
834754 1228502 1812894 10020274 1352755 1381822 چونگ کو 2
658428 293613 560244 4776548 592790 1177494 تای پینگ 3
177331 248709 371863 3174851 594259 601320 چاینا مارینرز 4
3925272 7851229 1753794 37392862 3531614 6699063 فوبون 5
415058 1713598 952326 9747908 668363 2627707 زوریچ 6
439039 2239593 643412 10685457 1443100 1942833 تائیان 7
622868 3899530 1134600 17267266 1873530 3789001 مینگ تائی 8
264098 1043778 546337 11473162 950432 1567746 سنترال 9
554806 1697941 504528 8210389 1298470 1303249 د فیرست 10
18259 1486014 643178 7222378 672414 1962448 کو هو 11
909295 1574191 1118489 9434406 650952 2592790 یونیین 12
223047 3609236 811343 13921464 1368802 2609941 شینگ کونگ 13
332283 1401200 465509 7396396 988888 1396002 چین جنوبی 14
555482 3355197 749893 10422297 651063 2184944 کاتای سنچری 15
197947 854054 402881 5606013 415071 1211716 آلیانز پریزیدنت 16
371984 3144484 342489 7695461 1085019 1453797 نیوا 17
163927 692731 995620 3631484 547997 757515 ای.آی.یو 18
46857 519121 483291 1141950 182338 159422 آمریکای شمالی 19
26537 355624 131920 316829 53518 145442 فدرال 20
6491 51950 40542 225888 26224 84171 روبال 21
4181 82141 14574 52063 10502 15993 آسیا 22
18980 0.1 49864 245910 28408 54693 ای.ایکس.ای 23
16976 142370 644816 476419 235094 163297 میتسو سومیتومو 24
جدول 1 اطلاعات را در 24 شرکت بیمه ی غیر عمر در تایوان نشان می دهد که دارای دو اندازه ی متوسط است. دو ورودی به مرحله ی اول، هزینه های عمل و هزینه های بیمه هستند. اندازه های متوسط ( یا خروجی های حاصل از مرحله ی اول ) حق بیمه های مکتوب مستقیم و حق بیمه ی مجدد هستند. خروجی های مرحله ی دوم ( تولید سود )، سود پذیره نویسی و سود سرمایه گذاری می باشند.
امتیازات کارایی برای دو مرحله ی مجزا بر اساس (4) و از طریق مجموعه ای از راه حلهای حاصل از مدل (3) محاسبه می شوند ( ستون های دوم، سوم و چهارم جدول 2 را ببینید ). به خاطر داشته باشید که تجزیه های کارایی با تجزیه های موجود در مدل کائو و هوانگ برابرند. در واقع، استفاده از مدل های (5) و (6) نشان می دهد که برای همه ی DMU ها برابر e_0^(1-)= e_0^(1+) و e_0^(2-)= e_0^(2+) است. بنابرین، e_0^(1,centralized) و e_0^(2,centralized) تعریف شده در مدل (4) یا تجزیه های کارایی در کائو و هوانگ منحصرا از طریق مدل (3)
تعیین می شوند.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 24 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود مقاله ترجمهDEA1