لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه12
تابع قابلیت اعتماد:
فرض کنید T یک متغیر تصادفی پیوسته که نشان دهنده ویژگی طول عمر است میباشد که زمان شکست نامیده میشود با تابع چگالی احتمال f(t) و فرض کنید T یک مقدار نامنفی است و مقیاس اندازه گیری تعریف میشود یک درک ویژه از T علامت گذاری کردن T است. تابع توزیع به صورت زیر است:
F(t) تجمع احتمال شکست را همانطور که t افزایش پیدا میکند توصیف میکند. F(t) در حال افزایش در زمان t=0، صفر است و متمایل به یک است وقتی t به بی نهایت میل میکند همچنین f(t) با مشتق گیری از F(t) بدست میآید.
شکل (1-1)- توابع توزیع و قابلیت اعتماد
صدمین صدک از توزیع T، مقدار tpرا میگیرد.
چنین نکاتی در یک توزیع طول عمر مناسب اند مثلا طول عمر ضمانت شده تولید مصرف کننده تابع قابلیت اعتماد R(t) بصورت زیر است:
R(t1=1-F(t)= P(T>t)
این احتمال وقتی که طول عمر از t متجاوز میشود را بیان میکند و اندازه عمدهای از قابلیت اعتماد است. میگوییم قابلیت اعتماد در to است. تابع قابلیت اعتماد تکمیل کننده F(t) است مقدار یک در t=0 میگیرد و متمایل به صفر است وقتی t به بی نهایت میل میکند.
F(t) و R(t)برهم منطبقند وقتی دو تابع مقدار 5/0 میگیرند. مقدار t در این نقطه t0/5 میانه است که یک اندازه ممکن برای متوسط طول عمر است.
مثال (1-1): یک تولید که دارای تابع قابلیت اعتماد زیر است:
که t سالها را اندازه میگیرد ضمانت 6 ماهه دارد احتمال شکست تولید در زمان گارانتی بوسیله داده شده است.
تعیین مدت زمان گارانتی لازم برای احتمال شکست 0/01، یعنی t0/01 از طریق حل معادله زیر بدست می آید :
بنابراین یک زمان گارانتی مناسب برای این تولید ممکن است تنها 3 ماه باشد. در آنالیز قابلیت اعتماد متوسط زمان برای شکست سیستم (MTTF) اغلب از موضوعهای مورد علاقه است که بصورت زیر میباشد:
(1-1)
اکنون میتوانیم نشان دهیم وقتی T روی بازه تعریف میشود، MTTF ناحیه بین R(t) و محور t است. این یک مقایسه مفید از توابع قابلیت اعتماد گوناگون است. با ارزیابی طرف راست (1-1) درمییابیم که:
در tR(t)، R(t) همانطورکه t به بی نهایت میل میکند متمایل به صفر است خیلی سریعتر از وقتی که t متمایل به بی نهایت است. بنابراین:
(2-1)
در نمودار (2-1) ناحیه تحت R2(t) واضحا بزرگتر از ناحیه تحت R1(t) است. و با قابلیت اعتماد بزرگتری در تمام t همراه است. در نمودار (3-1) توزیع های طول عمر MTTF یکسان دارند اما در واقع خیلی متفاوت اند.
شکل (1-2)- MTTF R2 بزرگتر از R1 دارد.
شکل (1-3)- دو تابع قابلیت اعتماد با MTTF یکسان یک
یک عامل مهم در انتخاب مدل بهتر طول عمر مورد نیاز تولید است. واضح است که برای مقادیر کم t، R2(t) رضایت بخش تر است. حال با این مدل قابلیت اعتماد یک مرتبه شروع به سرازیری ر
تحقیق در مورد توابع توزیع و قابلیت اعتماد