فرمت فایل wordبوده و قابلیت ویرایش دارد
تعداد صفحه:
معرفی
آزمون انتگرال
تصاعد هندسی
ویژگیهای اولیه سریهای هندسی
سریهای هندسی نامتناهی
اعداد مختلط
ضرب
تابع پیوسته تکه ای Piecewise continuou function
آزمون انتگرال از جمله آزمونهای همگرایی سری ها است که برای سریهایی با جملات نامنفی کاربرد دارد. این آزمون برای اولین بار در قرن چهاردهم توسط مدهاوا(Madhava) ریاضیدان هندی مطرح شد و بعدها توسط ریاضیدانان اروپایی چون کوشی و مک لورن گسترش پیدا کرد و به همین دلیل گاهی به عنوان آزمون کوشی-مک لورن یا آزمون انتگرال کوشی یا آزمون انتگرال مک لورن، نیز نامیده می شود.
آزمون انتگرال
اگر یک سری نا متناهی باشد و تابع تابعی نزولی و پیوسته در بازه به گونه ای باشد که و آنگاه سری و انتگرال غیر عادی , هر دو از نظر همگرایی مانند همدیگر هستند. همچنین بیانی ساده تر از این آزمون نیز به این صورت موجود است به این ترتیب که سری نامتناهی با جملات نا منفی همگرا است اگر و تنها اگر حاصل انتگرال غیر عادی متناهی باشد. که در آن f تابعی نزولی تعریف شده در بازه است که . حال اگر انتگرال واگرا باشد انگاه سری نیز واگرا است.
- با ارائه چند مثال روش استفاده از این آزمون را بررسی می کنیم:
می خواهیم همگرایی سری هارمونیک را با آزمون انتگرال بررسی کنیم. تابع نزولی و پیوسته در بازه است و داریم: همچنین این تابع تابعی است که برای هر n جملات سری هارمونیک را تولید می کند. پس می توان برطبق آزمون انتگرال سری هارمونیک و انتگرال غیر عادیاز نظر همگرایی مانند همدیگر هستند که در آن .
حال داریم:
پس انتگرال غیر عادی فوق واگرا است لذا بر طبق آزمون انتگرال سری هارمونیک واگرا است.
مقاله آزمون انتگرال