فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری

اختصاصی از فی موو جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری دانلود با لینک مستقیم و پر سرعت .

جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری


جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری

این فایل حاوی جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری می باشد که به صورت فرمت PDF در 117 صفحه در اختیار شما عزیزان قرار گرفته است، در صورت تمایل می توانید این محصول را از فروشگاه خریداری و دانلود نمایید.

 

 

 

 

 

فهرست
مقدمه
دامنه
دلایل تدوین دستورالعمل
بررسی صنعت ریخته گری
بررسی عوامل زیان آور در حرفه ریخته گری
پیشگیری از رخداد حوادث در ریخته گری
کنترل های بهداشت حرفه ای عوامل زیان آور در کارگاههای ریخته گری
لوازم حفاظت فردی در ریخته گری
نقش تشکیلات بهداشت حرفه ای در ارتقای سلامت در کارگاههای ریخته گری
خطرات حاصل از کاربرد مواد شیمیایی در تولید قالب و ماهیچه
جنبه های مهندسی فاکتورهای انسانی در فعالیتهای ریخته گری
بهداشت حرفه ای و ایمنی در کارگاه تمیز کاری

 

تصویر محیط برنامه


دانلود با لینک مستقیم


جزوه آموزشی راهنمای بهداشت حرفه ای در ریخته گری

تحقیق با عنوان ریخته گری تحت فشار

اختصاصی از فی موو تحقیق با عنوان ریخته گری تحت فشار دانلود با لینک مستقیم و پر سرعت .

تحقیق با عنوان ریخته گری تحت فشار


تحقیق با عنوان ریخته گری تحت فشار

تحقیق با عنوان ریخته گری تحت فشار

ریخته گری تحت فشار نوعی ریخته گری می باشد که مواد مذاب تحت فشار بداخل قالب تزریق می شود . این سیستم بر خلاف سیستم ریژه که مذاب تحت نیروی وزن خود بداخل قالب می رود امکانات تولید قطعات محکم وبدون مک می باشد. دایکاست کوتاهترین راه تولید یک محصول از فلز می باشد .

مزایای ریخته گری تحت فشار:

1-تولید انبوه و با صرفه
2-تولید قطعه مرغوب باسطح مقطع نازک
3-تولید قطعات پیچیده
4-قطعات تولید شده در این سیستم از پرداخت خوبی بر خوردار است.
5-قطعه تولید شده استحکام خوبی دارد.
6-در زمان کوتاه تولید زیادی را امکان می دهد.

معایب ریخته گری تحت فشار :

1-هزینه بالا
2-وزن قطعات در این سیستم محدویت دارد حداکثر 3 8
K g
3-از فلزاتی که نقطه ذوب آنها در حدود آلیاژ مس می باشد می توان استفاده نمود.


ماشینهای دایکاست:

این ماشینها دو نوع کلی دارند:

1-ماشینهای با محفظه تزریق سرد:
cold chamber در این نوع سیلندر تزریق خارج از مذاب بوده و فلزاتی مانند A L و C u و m g تزریق می شود و مواد مذاب توسط دست به داخل سیلندر تزریق منتقل می شود .
2-ماشینهای با محفظه تزریق گرم :
Hot chamber در این نوع سیلند تزریق داخل مذاب و کوره بوده و فلزاتی مانند سرب خشک و روی تزریق می شود و مذاب اتوماتیک تزریق می شود.

محدودیتهای سیستم سرد کار افقی:

1-لزوم داشتن کوره های اصلی و فرعی برای تهیه مذاب و رساندن مذاب به داخل سیلندر تزریق
2- طولانی بودن مراحل کاری
3-امکان بوجود آمدن نقص در قطعه بدلیل افت حرارت مذاب آکومولاتور یک سیلندر دو طرفه بازشوکه داخل آن یک پیستون شناور وجود دارد که یک سمت آن فشار گازاز نوع گاز بی اثر مانند گاز ازت که در سیستم با
D Oمشخص می باشد ، تحت فشار است و در سمت دیگر فشار روغن که در سیستم با P N مشخص می باشد.

وظیفه آکو مولاتور:
چون پیستون شناور آکومولاتور بوسیله فشار روغن شارژ شده است و پشت آن هم فشار متراکم گاز وجود دارد در زمان تزریق وقتی فشار روغن در یک سمت کم می شود . فشار گاز با سرعت زیادی پیستون را به سمت روغن هدایت نموده و باعث سرعت زیادی در ضربه دوم تزریق شده و مذاب را در مدت زمان کوتاه بداخل حفره قالب می راند .

نقش آکومولاتور:
اگر این اجزاء عمل نکند و در واقع نقشی در تزریق مذاب نداشته باشد قطعات دارای مک و بد تزریقی بوده و استحکام لازم راندارد.


بسته نگه داشتن قالب : (قفل قالب
D I E L O C K )

فشارهایی که در ریخته گری تحت فشار در فلز مذاب به وجود می آیند مستلزم داشتن تجهیزات ویژه جهت بسته نگهداشتن قالب می باشد تااز فشاری که برای باز کردن قالب در طی تزریق بوجود می آیدوباعث پاشیدن فلزاز سطح جدا کننده قالب می شود اجتناب شده و تلرانسهای اندازه قطعه ریختگی تضمین گردد. قالبهای دایکاست بصورت دو تکه ساخته می شوند یک نیمه قالب به کفشک ثابت ( طرف تزریق) و نیمه دیگر به کفشک متحرک ( طرف بیرون انداز) بسته می شود . قسمت متحرک قالب بوسیله ماشین روی خط مستقیم به جلو و عقب می رود و به این ترتیب قالب دایکاست باز و بسته می شود. بسته نگهداشتن هردونیمه قالب طی تزریق ،بسته به طراحی ماشین ریخته گری تحت فشار با روشهای مختلف صورت می گیرد. یک روش اتصال با نیرو است که از طریق اعمال یک نیروی هیدرولیکی بر کفشک متحرک به وجود می آید.روش دیگر،اتصال با فرم به کمک قفل و بند های مکانیکی صورت می گیرد این قفل و بند ها فقط با یک نیروی کوچک پیش تنش کار می کنند . در هر دو مورد یک بسته نگهدارنده ایجاد می گردد که با نیروی به وجود آمده باز کننده در قالب دایکاست مقابله می کند. نیروی باز کننده نتیجه فشار تزریق است که هنگام پر کردن قالب ایجاد می گردد.

سیستم قفل قالب به روش اتصال با نیرو معمولا شامل قسمتهای زیر است :

1-دومیز ثابت جلو و عقب و یک میز متحرک میانی
2-چهار عدد بازوی راهنما و هشت عدد مهرة فیکس
3-سیلندر محرک میز متحرک

قدرت قفل شوندگی قالب بستگی به موارد زیر دارد:

1-قدرت پمپ
2-قدرت سیلندر محرک میز
3-قدرت چهار عدد میله راهنما
4-زاویه شیب گوه ها

قالبهای دایکاست:
قالب دایکاست عبارت است یک قالب دائمی فلز ی بر روی یک ماشین ریخته گری تحت فشار که برای تولید قطعات ریختگی تحت فشار بکار می رود. هدایت کردن فلز مذاب به درون حفره قالب توسط کانالهایی انجام می گیرد که به آن سیستم مدخل تزریق – راهگاه - گلویی گفته می شود . هر قالب دایکاست از دو قسمت تشکیل شده است تا بتوان قطعه را بعد از انجماد از حفره قالب بیرون آورد. اجزاء قالب دایکاست که با فلز ریختگی مذاب در تماس هستند از فولاد گرم کار و یا از آلیاژهای مخصوص نسوز و مقاوم در برابر تغییر دما ساخته می شود .

ساختمان قالب:
در زیر جنبه های مهم طراحی قالب را مورد برسی قرار می دهیم:

تقسیم قالب:
همانطور که ذکر شدهر قالب دایکاست بصورت دو تکه است یعنی قالب ازیک نیمه ثابت(طرف تزریق)ویک متحرک (طرف بیرون انداز)تشکیل شده است . نیمه ثابت قالب (نیمه تزریق قالب)به کفشک ثابت ماشین ریخته گری تحت فشار مونتاژ می شود . در حالی که نیمه متحرک قالب (نیمه بیرون انداز قالب )به کفشک متحرک محکم می شود هر دو نیمه قالب در حالت آماده تزریق بسته هستند و با نیروی بسته نگهدارنده ای که از طرف ماشین ایجاد می گردد،در حالت بسته نگه داشته می شوند . سطح تماس هر دو نیمه قالب ، سطح جدایش قالب نامیده می شود. برای اجتناب از نفوذ فلز مذاب به خارج بایستی سطح قالب کاملاً آب بندی و از این جهت به صورت سطح سنگ زنی شده و یا هم سطح شده باشد .دقت انطباق صفحات قالب که روی هم قرار می گیرند اهمیت زیادی دارند .بهتر است که لبة خارجی در هر دو صفحه قالب حدواً 1
m m تا 2 m m تحت زاویه 4 5 پخ زده شوند . به این ترتیب از خرابی لبه ها توسط ضربه یا برخورد که منجر به تغییر شکل لبه ها می گردد و می توانند دقت انطباق را بر هم بزنند اجتناب می شود .
در خاتمه یک مطلب در مورد تعیین ابعاد سطح جدایش قالب ذکر می گردد که سطح جدایش دور تا دور حفره قالب یک سطح به اندازه کافی بزرگ آب بندی را بوجود بیاورد.

تخلیه هوای قالب :
یکی از شرایط مهم برای تولید قطعات مهم تولید تزریقی بدون عیب آن است که در موقع تزریق مقدار گازهای محبوس در ساختار قطعه محبوس در ساختار قطعه تا حد امکان کم باشد . و این تعداد کم تخلخلهای گازی با ابعاد کوچک میکروسکوپی به هم فشرده شوند . بدین ترتیب دو خواسته مطرح می گردد .
اولاً باید در پروسه تزریق تا حد امکان هیچ هوایی از تجهیزات تزریق به درون مذاب نفوذ نکند و ثانیاً هوای موجود در کانال تغذیه و حفره قالب بتواند هنگام تزریق بطور کامل خارج گردد.
فشردن تخلخلهای باقیمانده درقطعه از طریق اعمال فشار نهایی بعد از پر شدن قالب صورت می گیرد این فشار نهایی را می توان از طریق اتصال یک مولتی بلیکاتور افزایش داد.اولین خواسته به خصوص به واحد ریخته گری و در اینجا قبل از هر چیز به سیستم کنترل محرک ریختگی و مربوط می باشد . بایستی توجه داشت که پیستون مذاب آهسته حرکت کرده و فلز مذاب قبل از آنکه با سرعت برای پوشیدن قالب شتاب بگیرد در محفظه انتقال جمع گردد .تجمع در محفظه انتقال بدون تشکیل یک موج برگشتی از نفوذ هوا به درون محفظه انتقال جلوگیری کرده و شرایط را برای خروج بلا مانع هوای وارد شده از طریق جریان فلز به درون کانال تغذیه وحفره قالب و سپس از آنجا توسط کانالهای تخلیه هوا به بیرون آماده فرایندهای ویژه ، مانند حرکت شتابدار پیستون مذاب ، تأثیرمبتنی بر کاهش هوا و ناخالصیهای گازی در فلز تزریقی می گذارند.
درخواست دوم مربوط به تخلیه هوای حفره قالب مربوط است . هوای نفوذ ی توسط جریان فلز بایستی به راحتی خارج گردد. بنابر این بایستی کانالهایی برای تخلیه هوا در نظر گرفت تا هوای گازهای قالب بتوانند از طریق آنها به بیرون انتقال یابند تخلیه ناقص هوا از قالب یکی از علتهای رایج عدم نفوذ کیفیت قطعه می باشد . برحسب تجربه پایین بودن بیش از اندازه سرعت فلز باعث عیوب ریختگی مانند سطح خارجی زبرورگه دار تزریق سرد و ناخالصیهای گازی می گردد .
بنابر این سرعت جریان فلز مذاب د رحفره قالب تاوقتی که قالب کاملاً پر شود با ازدیاد فشار گاز ( در نتیجه تخلیه خیلی آهسته هوا) کاهش می یابد. فشار گاز در حفره قالب از گلوئی تا اخرین ناحیه پر شده حفره قالب افزایش می یابد ، با توجه به میزان اثر گذاری تخلیه هوای قالب ، اندازه حد اکثر فشار گاز متفاوت است . تجمع عیوب ریختگی در آخرین قسمت های پر شده قطعه تزریقی همیشه نمایانگر آن است که تخلیه هوا ناقص انجام گرفته است . بهبود و توسعه تخلیه هوای قالب در این نقاط از حفره قالب خطر عیوب ریختگی را کاهش می دهد ، زیرا به این ترتیب فشار گاز پایین آمده و متناسب با آن سرعت جریان فلز مذاب کمتر می گردد .
به این ترتیب بایستی در قالب دایکاست کانالهایی با ابعاد کافی برای سطح مقطع جهت تخلیه هوا تغییر گردند همه سطوح انطباقی قسمت های قالب در حفره قالب (مغزیها قالب، ماهیچه ها ثابت و متحرک ، پینهای پران ) و طبیعتاً سطح جدایش قالب نیز در تخلیه هوا مؤثر هستند اما معمولاً این مقاطع که در تخلیه هوا نقش دارند به آن اندازه ای نیستند که هوای موجود در قالب تزریق را در مدت زمان بسیار کوتاه پر شدن قالب بطور کامل تخلیه نمایند . سطوح جدایش قالب بویژه در قالب های جدید غالباً با دقت زیادی ماشینکاری و آب بندی می گردند . بطوری که سهم آنها در تخلیه هوا ناچیز است .
کانال های تخلیه هوا در سطح جدایش قالب مرز کاری می گردند و از کناره حفره قالب یا از سر باره گیره ها بصورت خط مستقیم تا لبة خارجی هدایت می شود.
عرض کانال ها در حدود 10
mm تا 15mm و عمق آنها 0.1mm تا 0.2 mm است فلز مذاب به درون کانال های تخلیه هوا نفوذ می کنند ، اما طول نفوذ برای یک کانال با عمق 0.2mm بسیار کوتاه است . برای جلوگیری از تخلخل های ایجاد شده در اینجا ، کانالهای تخلیه هوا در سر باره گیره ها قرار داده می شود و این سر باره گیره ها در پلیسه گیری ان جدا می گردند.
طول کانالهای تخلیه هوا باید حداقل 100
mm باشد و به همان اندازه بایستی ما برای آن بر روی سطح جدایش در اختیار باشد . وجود کانالهای تخلیه هوا فقط در یکی از دونیمه قالب در سطح جدایش کافی است.
بهتر است همیشه از ماهیچه های ثابت موجود در قالب دایکاست نیز جهت تخلیه هوای قالب بهره برد. برای این منظور با یک لقی انطباق حدوداً 0.05
mm در صفحه قالب قرار داده می شوند.
باید به فاصله تقریباً 100
mm از پشت دیواره قالب ، یک گاه در نظر گرفته شود تا هوای رانده شده جمع آوری و سپس از طریق سطح ایجاد شده بر روی شفت ماهیچه به خارج انتقال یابد.همچنین سطوح لغزش ماهیچه های متحرک ، که دارای یک لقی انطباق زیاد در حدود 0.1 mm هستند و نیز پینهای پران که معمولاً بالقی کمتر از 0.03 mm نصب می گردند در تخلیه هوا مؤثرند.
در حالی که روشهای ممکن جهت تخلیه هوای قالب که از آنها نام برده شد ، تنها برای آن بکار می روند تا هوای رانده شده از فلز تزریقی را از حفره قالب دور نگهدارند و از تشکیل یک فشار معکوس و مزاحم گاز در حفره قالب جلوگیری کنند ، بایستی از طرف دیگر تدابیری نیز جهت انتقال هوای محبوس در جریان فلز به بیرون اندیشد معمولاً تا حدودی تشکیل حرکت گردابی در جریان پر کننده اجتناب ناپذیر است، بطوری که مثلاً در تغییر مسیر جریان و در برخورد ماهیچه های بر آمده و دیوارهای قالب و همچنین توسط یک جریان برگشتی امکان تشکیل گرداب وجود دارد بعلاوه باقیمانده مواد جدایش با جریان تزریق همراه شده و یا توسط آن شسته می شوند از این رو اتخاذ تدابیر بایستی هوا ، گازهای قالب و یا اکسید های به وجود آمده توسط حرکت گردابی فلز مذاب جمع اوری و از حفره قالب خارج گردند برای این منظور از قسمتهای بنام سر باره گیرها مناطق فرز گازی شده کوچکی در صفحه قالب نزدیک کنارحفره قالب می باشند که توسط یک گلویی نازک به حفره قالب متصل می گردند.به این ترتیب فلز مذاب به درون سر باره گیر سر ریز می شود . با توجه به اینکه بخصوص ابتدای جریان تزریق ، یعنی جبهه جریان ، از هوا ، اکسیدها و باقیمانده مواد جداکننده فنی می باشد سر باره گیرها بویژه در جایی در نظر گرفته می شوند که در آنجا جبهه جریان به دیواره قالب پرتاب می گردد. بنابراین سر باره گیر فلز تزریقی را که دیگر شرایط مطلوب کیفی را دار نمی باشد گرفته و از حفره قالب دور می کند .
برای طراحی صحیح سر باره گیر بایستی تصور روشنی از نحوه تغییرات جریان داشت. سرباره گیره ها بر حسب نوع گلویی ، که نحوه تغییرات جریان را مشخص میکنند همیشه در ناحیه انتهای جریان پرکننده قرار داده می شوند .

گرم کردن و خنک کردن قالب

گرم کردن قالب :
قالب دایکاست بایستی بر روی ماشین دایکاست قبل از شروع بکار تا دمای لازم گرم گردد. تحت هیچ شرایطی نبایستی با یک قالب سرد و یا به قدر کافی خنک نشده ریخته گری را آغاز نمود ، در غیر این صورت تنش های حرارتی بالایی در سطح خارجی قالب پدید می آیند ، که معمولاً از بین نمی روند و باعث تشکیل ترکهای زود رس ناشی از سوختگی می گردند .
دمای گرم کردن قالب بایستی تقریباً به اندازه میانگین دمای قالب که برای ریخته گری ضروری است باشد ( آلیاژ آلومینیم از 250 تا 310 ) بطور کلی اگر در مرز بالای درجه حرارت های توصیه شده برای قالب بهتر بوده و طول عمر قالب می تواند بطور قابل ملاحظه أی افزایش یابد ، زیرا اختلاف بین دمای ریخته گری و دمای قالب کمتر است . اندازه تنشهای متناوب حرارتی به عنوان عامل تشکیل ترکهای ناشی از سوختگی به دمای قالب بستگی دارد . هر چه افت حرارتی بین دمای ریختگری و دمای قالب کمتر باشد ، به همان نسبت نیز انبساط در سطح خارجی قالب و خطر ایجاد ترک کمتر است.
برای گرم کردن از دستگاه های گرم کننده به تنهایی و همراه با دستگاه های خنک کننده استفاده می شود. مشعلهای گازی بخاطر اینکه اجزاء بر جسته قالب ، ماهیچه های نازک و پینهای پران شدید تر از نواحی ضخیمتر قالب گرم می کنند مناسب نمی باشند در این گونه مواد خطر گرم شدن بیش از اندازه موضعی در فولاد عملیات حرارتی شده قالب وجود دارد، که تأثیری مانند عملیات بازگشت پس از آن به جا می گذارد و می تواند باعث کاهش استحکام گردد. برای این منظور گرم کننده های مادون قرمز و یا گرم کننده های سرامیکی ، گازی که توزیع حرارتی نسبتاً یکنواختی بوجود می آورند و مناسب ترند این نوع دستگاهها به شکل قاب و یا جعبه ساخته شده و بین دو نیمه باز شده قالب قرار داده می شوند . اما در اینجا هم بایستی توجه داشت که هیچ جایی بیش از اندازه گرم نشود و یا در نواحی مشخص از قالب سد حرارتی ایجاد نگردد.

خنک کردن قالب :
درهر سیکل تزریقی گرما به قالب دایکاست انتقال می یابد برای بدست اوردن قطعه تزریقی بایستی فلز مذاب منجمد ، تا دمای انجماد سرد گردد. برای اینکه بتوان قطعه تزریقی را از قالب گرفت و یا به بیرون پرتاب نمود ، بایستی آنرا تا دمای باز هم پایینتر خنک نمود . این بدان معنی است که برای خنک کردن مطلوب فلز تزریقی بایستی مقداری گرمای زیادی از طرف قالب دریافت و انتقال داده شود. خواص حرارتی جنس ماده قالب به گونه أی که این تخلیه گرمایی امکانپذیر می گردد اما بایستی این گرما از خود قالب هم خارج شود و این وظیفه سیستم خنک کننده قالب است . به عنوان ماده خنک کننده ، معمولاً از آب و بعضاً نیز از روغن موجود در دستگاههای تنظیم دما ، در صورتی که هم برای گرم کردن و هم برای خنک کردن بکار رود استفاده می شود .
برای قطعات تزریقی کوچک و یا جدار بسیار نازک ممکن است بتوان از خنک کردن قالب بطور کامل صرفنظر نمود ، به شرطی که گرمای ارائه شده از طریق افزایش تعداد تزریق ها بیشتر از گرمای پس داده شده به بهترین وجه از طریق تشعشع ، همرفت و هدایت نباشد . طبیعی است که این موضوع برای ریخته گری آلیاژ های با دمای ذوب نسبتاً پایین هم مانند قطعات دایکاست کوچک و جدار نازک سرب و قلع صادق است .
حتی د رقطعات دایکاست جدار ضخیم هم گاه نیازی به خنک کردن قالب نیست ولی معمولاً در ماشینهای اتوماتیک سریع با محفظه ضروری است .
برا ی خنک کردن قالب، کانالهایی در قالب دایکاست برای جریان یافتن ماده خنک کننده تعبیه می گردد این کانال ها بطرف ناحیه ایاز قالب که با قطعه تماس دارد هدایت می شوند یعنی جایی که انتقال گرما از قطعه تزریقی یه سمت قالب آغاز می گردد اگر صفحه قالب فاقد مغزی قالب باشد کانالهای خنک کن در داخل صفحه قالب فاقد مغزی قالب باشد کانالهای خنک کن در داخل صفحه قالب سوراخکاری شده و به مدار سیستم خنک کننده مربوط متصل می گردد.
کانال های خنک کن در قسمتی از قالب که بایستی خنک گردد به روشهای گوناگون طراحی می گردند . نحوه هدایت کانال بایستی طور انتخاب شود که بخصوص ناحیه ای از قالب که پشت حفره قالب قراردارد بتواند خوب خنک گردد.
کانال های درون قالب به صورت مستقیم هدایت می شوند اما درعین حال تغییر زاویه و تطبیق این کانال ها به لبه های قالب هم امکانپذیر است .

 

و ...
در فرمت word
قابل ویرایش
در 20 صفحه


دانلود با لینک مستقیم


تحقیق با عنوان ریخته گری تحت فشار

دانلود مقاله کامل درباره ریخته گری فلزات

اختصاصی از فی موو دانلود مقاله کامل درباره ریخته گری فلزات دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره ریخته گری فلزات


دانلود مقاله کامل درباره ریخته گری فلزات

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :147

 

بخشی از متن مقاله

خلاصه و چکیده

همان طور که می دانیم عموما ً قطعات ریخته گری به صورت سفارشی از مشتریان به کارگاههای ریخته گری پیشنهاد می شود و اغلب برنامه تولید این گونه کارگاهها از قبل مشخص نیست . پس از سرد شدن و جدا کردن محصول از قالب انجام عملیات اصلاحی از جمله عملیات تمیزکاری بر روی محصول ضروری است . لذا بخشی در این واحدها وجود دارد که وظیفه انجام این کار بر عهده آنهاست .

 با توجه به تفاوت بین هر قطعه ریخته گری شده با بعدی به علتهای بسیار زیاد از طرفی و هزینه دار بودن انجام این فرآیند از طرف دیگر و همچنین متفاوت بودن انتظارات مشتریان ، عموما ً این قسمت در کارخانه های ریخته گری توسعه نیافته است .

بنابراین به نظر می رسد وجود کارگاهی که بتواند این خدمات را به صورت جامع و کامل به این واحدها ارائه دهد لازم است .

 به طور کلی در این کارگاه انجام عملیات سنگ زنی ، سندبلاست  و شات بلاست ، تراش کاری ، فرزکاری و عملیات وابسته و در نهایت رنگ آمیزی می تواند وجود داشته باشد .

البته با توجه به تجمع تعداد زیادی از کارخانجات ریخته گری در شهرک صنعتی اشترجان بهتر است محل کارگاه دراین منطقه باشد .

مراحل اجرایی پروژه

  1. بررسی منطقه صنعتی اشترجان
  2. تهیه لیست شرکتهای مرتبط با موضوع پروژه
  3. گزینش تعدادی از شرکتها جهت پاسخگویی به سوالات
  4. تهیه پرسشنامه مناسب جهت اخذ اطلاعات
  5. گرد آوری اطلاعات از طریق پرسشنامه
  6. تجزیه و تحلیل پاسخها
  7. مکان یابی شرکت با استفاده از مدلهای ریاضی

تاریخچه ریخته گری

احساس عمومی آن است که ریخته گری تا اواسط قرن حاضر به صورت یک هنر تجربی تلقی می گردید .تنها در نیم قرن اخیر است که زیربنای علمی برای این فرآیند تولید اساسی مهیا گردیده است . واقعیت این است که بسیاری از تکنیک های مدرن و ابداعی امروزی در زمینه های متالوژیکی ، هنگامی که به گذشته برمی گردیم ، راه حل های علمی مسائل آن در زمان های دور دانسته شده بود . پیدایش و تولید چدن با گرافیت کروی در اواسط قرن حاضر در اروپا و امریکا که به عنوان مهم ترین پدیده ریخته گری قرن حاضر معرفی شده ، در حقیقت در حدود دو هزار سال پیش از آن در چین تولید می گردیده است . کشف اخیر کوره های بلند احیا سنگ های معدنی در افریقا ، متعلق به سه هزار سال پیش نمایانگر توجه گذشتگان ما به جنبه های متالوژیکی تولید قطعات صنعتی می باشد .

پنج هزار سال پیش ،همان زمانی که تازه عصر نوسنگی در بریتانیا ، آلمان و سپس در استرالیا پی گرفته بود ، مصر و بین النهرین هزار سال بود که سفالگری می کردند و در عصر مفرغ ( آلیاژ مس و قلع ) بودند . میل به جمع آوری طلا ، جواهرات ، مرمر سبز ، فیروزه ، فسفات آلومینیوم آمیخته با مس و شهاب سنگ ها به علت این که رنگی شفاف داشته اند و به دلیل خواص جادویی که گمان می رفت در آنها نهفته باشد ، انسان اولیه را به نواحی فلزدار کشانید و اولین حرفه تخصصی را بعد از جادوگری که پدیده صنعت می باشد برای بشر اولیه به وجود آورد.

اشیا کوچک مسی ، سنجاق ، نیزه و قطعات آهن حاصل از شهاب سنگها مربوط به بیش از سه هزار سال قبل از میلاد که در گور مصریان یافت شده است ، بیانگر این مطلب است که فلزگری پس از چهار هزار سال قبل از میلاد در خاور باستان به خوبی شناخته شده بود . ولی در حدود سال سه هزار قبل از میلاد تمدن مفرغکاری در قفقاز ، فلسطین ، سوریه ، بلوچستان و ایران با ویژگی های خاص خود به وجود آمد. مردم سومر و دره سند پیش از سال سه هزار قبل از میلاد قلع را می شناختند و به منظور تسهیل کار ریخته گری به عنوان آلیاژ مس به کار می بردند .

شاید اولین خصوصیت یک فلزکه مورد توجه بشر قرار گرفت ، خاصیت کار پذیری مکانیکی بدون از دست دادن قابلیت چسبندگی ذرات آن بوده است . شاهد این مدعا تغییر شکل تکه ای فلز به ورقه ای پر نقش و نگار است که از آسیای شرقی به دست آمده است و متعلق به حدود سه هزار سال پیش است . مهم تر از آن استفاده از اشیا کار شده طلا توسط انسان های اولیه در حدود هشت هزار سال پیش از میلاد مسیح می باشد . تمام شواهد به دست آمده نشان می دهد که اولین فلزی که ذوب گردید ، مس بوده است . زمان معینی را نمی توان برای آغاز عصر مس بیان داشت .

برنز که در حالت ریختگی سیاه تاب دارای استحکام بیشتری از مس است در حدود سه هزار سال قبل از میلاد جایگزین بعضی از اشیا مسی گردید . این ایام که تا 1200 سال قبل از میلاد به طول انجامید، عصر برنز نامیده می شود و بعد از عصر برنز عصر آهن آغاز می شود .

شروع ذوب چدن حدود دو هزار سال قبل از میلاد بوده و قطعات تولیدی عموما ً به مصرف اشیا تزئینی می رسیده است . متالوژی فولادهای ریختگی به حدود پانصد سال قبل از میلاد نسبت داده می شود .

در حدود سه هزار سال قبل از میلاد روش ابداعی قالبسازی با موم در بین النهرین به کار می رفت ولی قالب های اولیه از نوعی ماسه بود و بعدا ً با تعبیه شکل قالب در سنگ به یک نوع قالب نیمه دائمی دسترسی پیدا شد .

مردمان چین با ابداع تکنیک قالب های دو تکه و روش مدل های مومی پیشرفت وسیعی را در این صنعت پدید آورند.

به هر حال شواهد موجود نشان می دهد چینی ها در حدود هفتصد سال قبل از میلاد به ریخته گری آهن مبادرت ورزیدند و ایران نیز یکی از کشورهایی است که فن ریخته گری و گداختن فلز را از زمان های قدیم شروع کرده است . چنانکه در شهر حسن لو که در آذربایجان شرقی فعلی بوده است در حدود 600 سال قبل از میلاد ذوب آهن انجام می گرفته و قطعات ریخته شده از آهن در خرابه های آن کشف شده است .

برای گداختن ، قالبگیری و ریخته گری نوعی دستگاه دم ضروری است زیرا فقط سنگ های مس مستقیما ً به کمک حرارت ذغال به مس خالص تبدیل می شوند . سنگ های دیگر عموما ً سولفید بوده و باید قبل از گداختن ابتدا در مجاورت دمش هوا سوخته و اکسید شوند . این عوامل باعث در تنگنا قرار دادن ریخته گران آنروز گردید تا جایی که باعث اختراع تکمیل ابتدایی فن ریخته گری که تا سال هزار و سیصد قبل از میلاد کشانیده شد ، گردید .

در حدود سال پانصد میلادی اولین کوره ریخته گری آهن در هندوستان به وجود آمد که روش تهیه و نوع ریخته گری آن تقریبا ً نا مشخص است .

 در اروپا ریخته گری آهن تا قرن چهاردهم میلادی مرسوم نگردید . در این قرن اولین ناقوس کلیسا از برنز در سال 1313 ریخته شد و بیشتر در زمینه های هنری مثل ساختن مجسمه هایی از برنز یا طلا از مقدسین مسیحی ادامه یافت که منجر به پیشرفت قابل ملاحظه صنعت ریخته گری گردید .

اولین شخصی که به تالیف و تدوین مطالب ریخته گری مبادرت ورزید انریکو برینکوگر (1539-1480 م  ) است . این شخص که اروپاییان پدر صنعت ریخته گری می نامند به تحریر جزئیات حرفه ای ریخته گری در آن زمان با ذکر تجربیات خود و سایرین همت گماشت . سه اصل عمده ای که مطرح نمود و هنوز هم به قوت خود باقی است عبارتند از : قالب خوب ، ذوب خوب ، آلیاژ و ترکیب مناسب که هر ریخته گری ملزم به رعایت این سه اصل می باشد .

در قرن هجدهم رامور ( میلادی1758  – 1683 )ضمن فعالیت های خود به ریخته گری چدن توجه خاص نمود و موفق به ساختن چدن مالیبل گردید و تاثیر عوامل گوناگون بر روی ساختمان چدن ها و تهیه چدن های سفید ، خاکستری و خالدار را نشان داد که نتیجتا ً چدن به عنوان یک فلز صنعتی مورد قبول قرار گرفته و ازدیاد مصرف آن ، تولید وسیع آن را به دنبال داشت .

اولین کوره ذوب با سوخت کک ( که موسوم به کوره بلند است ) در سال 1730 میلادی توسط آبراهام داربی به کار افتاد . این کوره قادر به تولید چدن مذاب به مقدار زیاد بود و همین عامل به تدریج یکی از عوامل انقلاب صنعتی در اروپا گردید . اولین کوره کوپل نیز در سال 1794 میلادی توسط جان ویل کینسون ساخته شد و کمک زیادی به کارگاه های ریخته گری چدن نمود.

موقعیت چدن در صنعت با پیدا شدن روش تولید فولاد ارزان از طریق بسمر ( میلادی 1856‌) کمی تنزل پیدا کرد و بعدا ً با ساخته شدن انواع کنورتورها ، کوره های نفت سوز و شعله ای ، مشکل ذوب فلزات با درجه حرارت بالا اهمیت خود را تا حدودی از دست داد و انواع فولادها و آلیاژهای امروزه ریخته گری پیشرفت شایانی نموده است که به خصوص پیشرفت سریع و اساسی تکنولوژیکی این رشته در قرون اخیر مشهود است.

امروزه بدون تردید ریخته گری در تهیه حدود %90 از قطعات صنعتی به طور مستقیم یا غیرمستقیم نقش دارد . ماشین ، موتور ، هواپیما ، قطعات کشاورزی ، قطعات صنعتی و حمل و نقل فقط قسمت کوچکی از اجسامی اند که از طریق روش ریخته گری ، شکل می گیرند . اینک در جهان هزاران کارخانه ریخته گری وجود دارند که در خدمت صنایع سنگین مثل ماشین سازی ، صنایع متوسط و صنایع سبک قرار دارند .

پیشرفت سریع و وسیع این صنعت و ابداع روش های جدید ، مصرف روزافزون تولیدات و تقاضا برای ساخت هر چه بیشتر قطعات ، کارخانجات و صنایع ریخته گری را به تولید انبوه وادار ساخت و در جوار آن ، تقسیم بندی روشها و بالنتیجه تخصص ها انجام گردید به طوری که کلیه کارهایی که در سابق توسط یک کارگاه و احتمالا ً یک گروه از افراد انجام می گرفت ، امروزه توسط گروه ها و متخصصین مشخص و مجزا انجام  می شود .

فرآیندهای ریخته گری سریع و بسیار دقیقی توسعه یافته اند که به وسیله آنها می توان قطعات را با تلرانس های بسیار دقیقی تولید نمود .

روش ها و تکنیک های متفاوتی در صنعت ریخته گری به منظور تهیه قطعات به کار می رود که از آن جمله ریخته گری سنتی یا ریخته گری در ماسه می باشد ولی امروزه تکنولوژی پیشرفته و پیچیده تری حاصل شده است که منجر به تدوین و تکوین روش های مختلف و متکامل تری گردیده است .

از جمله این روشها می توان به ریخته گری در قالب دائمی ( permanent mold casting ) ، ریخته گری تحت فشار (  pressure die casting) ، ریخته گری گریز از مرکز centrifugal casting ) ) و ریخته گری دقیق ( investment casting) و از نظر ذوب و قالبگیری ، به ذوب و ریخته گری در خلاء ، روش قالبگیری به کمک خلاء ( vacuum molding) ، روش قالبگیری بدون درجه ( نظیر روش دیزاماتیک ) (disamatic) اشاره کرد.

 بررسی میزان تولید قطعات ریخته گری در سال های اخیر می تواند ملاکی برای پیشرفت سریع و روزافزون این صنعت و نیز نیاز هر چه بیشتر جهان صنعتی به این رشته باشد .جدول شماره 1 مجموع تولیدات قطعات ریختگی در تمام کشورهایی که آمار تولید آنها در دست است در سال 1978 را نشان می دهد .

تعریف ریخته گری

اصولا ً قطعات فلزی را می توان به روش های مختلفی تهیه کرد یا آنها را تغییر شکل داد ، ولی ریخته گری عبارت است از هر گونه تغییر شکل دادن فلزات و آلیاژها از راه ذوب فلز ( آلیاژها ) و ریختن آنها در محفظه ای به نام قالب . این محفظه مطابق با شکل مورد نیاز،  طراحی  و ساخته شده است .

بنابراین در عملیات ریخته گری یک قالب مناسب به شکل قطعه ای که باید تولید شود ، تهیه  می گردد . فلز یا آلیاژی که قطعه باید از آن تهیه شود ، ذوب می گردد و مذاب تحت شرایط کنترل شده و لازم به داخل قالب ریخته شده و فرصت کافی جهت انجماد به مذاب داده می شود تا قطعه مطلوب تولید گردد.

قطعه تولید شده به روش ریخته گری ممکن است پس از تمیزکاری مستقیما ً مورد استفاده قرار گیرد ، اگر چه اغلب پس از ریخته گری قطعات ، آنها را تحت عملیات حرارتی – تراشکاری و پرداخت قرار می دهند تا برای استفاده یا مونتاژ آماده شوند .

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره ریخته گری فلزات

تحقیق در مورد ریخته گری مداوم ( مداوم ریزی )

اختصاصی از فی موو تحقیق در مورد ریخته گری مداوم ( مداوم ریزی ) دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ریخته گری مداوم ( مداوم ریزی )


تحقیق در مورد ریخته گری مداوم  ( مداوم ریزی )

فرمت فایل : word  (لینک دانلود پایین صفحه) تعداد صفحه  : 26

ریخته گری شمش ها به طریقه تکباری از نظر مشخصات متالوژیکی ، تکنولوژیکی و تولیدی دارای نارسایی ها و نقایص عمده ای است که تبدیل شرایط انجماد و افزایش کمیت و کیفیت تولیدی را ایجاب می نماید و در هر یک از شاخه های متالورژی آهنی و غیر آهنی ، مهمترین مباحث تولیدی بر انتخاب بر آیند مطلوب  از سه عامل متالورژی ، تکنولوژی و اقتصاد قرار دارد . در شمش ریزی که به تولید محصول نیمه تمام می انجامد ، بسیاری از عیوب و نارسایی های تولیدی ، هنگامی مشخص می گردند که کار مکانیکی  نظیر نورد ، پتکاری ، پرس ، فشار کاری و ... بر روی قطعه انجام گرفته است و کار و هزینه بیشتری صرف شده است و همین مطلب دقت و کنترل در تولید شمش ها را لازم می دارد .


دانلود با لینک مستقیم


تحقیق در مورد ریخته گری مداوم ( مداوم ریزی )

دانلود مقاله کامل درباره کاربرد ریخته گری

اختصاصی از فی موو دانلود مقاله کامل درباره کاربرد ریخته گری دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره کاربرد ریخته گری


دانلود مقاله کامل درباره کاربرد ریخته گری

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :116

 

بخشی از متن مقاله

ریخته گری و متالوژی پودر:

مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات
می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل:

(i) قالب گیری پوسته‌ای

( ii ) قالب‌گیری بسته‌ای

(iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد.

 قالب گیری پوسته ای: این فرآیند را می توان به عنوان فرآیند گسترش داده شده ریخته گری ماسه ای دانست. اصولاً این روش از 2 نیمه مصرف شدنی قالب یا پوسته قالب از ماسه مخلوط شده با یک چسب مناسب جهت ایجاد استحکام در برابر وزن فلز ریخته شده، پخته شده است تشکیل می شود.

شکل دهی پوسته:

برای تشکیل پوسته ابتدا یک نیم الگوی فلزی ساخته می شود که معمولاً از جنس فولاد یا برنج می باشد و به صفحه الگو چسبانده می شود. یک الگوی راه گاه بر روی این صفحه تعبیه می شود. بر روی الگو یک زاویه 1 تا 2 درجه برای راحت جدا شدن ایجاد می شود. همچنین بر روی صفحه الگو دستگیره هایی برای جدا کردن صفحات ایجاد می شود.

پخت جزعی: این مجموعه تا درجه حرارت  در کوره یا توسط هیترهای مقاوم الکتریکی که در داخل الگو نصب شده اند گرم می شوند. از هر کدام از روشهای حرارت دهی که استفاده شده باشد صفحه الگو به جعبه های ماسه مخلوط شود. با چسب تر متوسط متصل می شود این جعبه سپس وارونه شده تا مخلوط ماسه و چسب بر روی الگوی حرارت دیده ریخته شود تا رزین یا چسب ذوب شده و باعث چسبیدن ماسه شود. پس از 10 تا 20 ثانیه را برگردانده تا یک لایه ( حدوداً  نیمه پخته شده پوسته که به الگو چسبیده باقی بماند.

 پخت نهایی و ریزش:

مجموعه صفحه الگو به همراه پوسته به داخل کوره براه شده تا پخته نهایی در درجه حرارت 300 الی  در مدت زمان 1 الی 5 دقیقه صورت گیرد. زمان و درجه حرارت دقیق جهت این کار بستگی به نوع رزین مصرف شده دارد. پس از پخت پوسته از صفحه الگو جدا می شود هر دوی پوسته ها به این روش ساخته می شود. و قالب به هم چسباندن 2 نیمه توسط چسب یا کلمپ یا پیچ کامل می شود.

   

قالب همگون آماده ریختن می باشد. در جاهایی که احتیاج به قسمتهای تو خالی
می باشد. فنری قرار داده می شود و این ماسه مشابه روش ریخته گری ماسه ای انجام
نمی شود. مراحل ساخت یک پوسته قالب در شکل (1. 2) نشان داده شده است.

مراحل تهیه و ساخت قالب گری پوسته ای:

در مقایسه با روش ریخته گری ماسه ای قالب گیری پوسته ای دارای مزایای زیر
می باشد:

a) دقت ابعادی بهتر یا تلرانس (  ).

b) تکمیل سطح بهتر یا قابلیت دوباره تولید جزئیات دقیق تر.

c) این فرآیند جهت کارکردهای غیر ماهر یا با مهارت کم می توانند استفاده کنند.

اشکال این روش قسمت بالای الگوها و ماسه قالب گیری آنها می باشد. ( هر چند ) چون فرآیند نیمه مکانیزه می باشد زمان تولید یک پوسته قالب در مقایسه با ساخت یک قالب برای ریخته گری ماسه ای به صورت قالب ملاحظه ای کمتر می باشد. بنابراین این فرآیند جهت تولید ریخته  اثر بالا که هزینه های اولیه در آن قابل جبران می باشد مناسب می باشد.

 قالب گیری Invesment )   (بسته‌ای)

این روش ریخته گری قدمتی مانند ریخته گری ماسه ای دارد توسط قدیمیان جهت ساخت قطعات با جزئیات دقیق مانند دسته شمشیر و جواهرات مورد استفاده قرار گرفته است. در طول قرن ها این فرآیند محدود شده بود به مجسمه های برنزی و به درستی تنی فرآیندی است که امروزه در این حرفه مورد استفاده قرار می گیرد در پانزده سال اولیه این قرن بوده که قالب گیری Invesmemt جهت فرآیندهای صنعتی به ویژه در جابه جائی که ریخته ها با دقت ابعادی و تکمیل سطح بالا مورد نیاز است مناسب تشخیص داده شده.

اساساً رویه فوم از مراحل ساختن و شکل دادن تشکیل شده است که از مواد نسوز (مقاوم در مقابل حوادث ) برای شکل دادن قالب پوشانده می شود.

وقتی پوشانده سخت می شود فوم مذاب از حفره های قالب بیرون زده و از آهن مذاب پر می شود. زمانی که آهن مذاب به درجه انجماد رسید و قالب نسوز شکسته
 شد، چدن ریخته گری ظاهر می شود.

I) مدل ساخته می شود.  II) مدل پوشانده می شود. III ) آهن ریخته گری می شود.

ساختن مدل

برای رویه فوم به یک قالب دو نیمه ای لازم است که اساساً از یک یا دو روش زیر ساخته می شود.

1) زمانیکه انتظار دوام طولانی داشته باشیم، قالبها معمولاً از آهن، استیل، برنج، آلومینیوم ساخته می شوند. شکل معکوس قالب را در فلز تراش داده و آن را برای راحتی انقباض مقداری بزرگ می سازند، که مقدار دقت و مهارت در این مرحله خیلی بالاست. دقیقاً مانند مرحله ساخت قالبهای پلاستکی.

   


2) اگر دوام قالب مهم نباشد. از قالبهای ارزانی که با آلیاژ های نقطه ذوب پائین ساخته شده استفاده می شود. مراحل در شکل (2-2) نشان داده شده است.

 

اولین لازمه قالب اصلی است که از برنج یا استیل ساخته شده است که از سطح صاف و صیقلی ساخته شده، برای انقباض موم مقداری اندازه آن را بزرگ می سازند. شکل تا

عمق نصف قالب داخل ماسه فرو می رود و قالب استیلی دور بقیه شکل قرار داده میشود و با آلیاژهای بانقطه ذوب پائین 19 درجه سانتیگراد پر میشود.

پس از انجماد شدن آلیاژ دو نیمه قالب از هم جدا می شود و ماسه اطراف آن عوض میشود با همان آلیاژ نقطه ذوب پائین مانند قبل.

هر کدام از روشهای ساخت نوع قالب استفاده شده را معین می کند. و پس از انتخاب موم گداخته شده را داخل آن تزریق می کنیم و آن را مونتاژ می کنیم. بعد از انجماد موم قالب را دو نیمه کرده و موم شکل گرفته را از آن خارج می کنیم.

   

پوشاندن مدل:

به پوشش نسوزی که به روی شکل کشیده می شود که قالب را تکمیل کند و به آن پوشاننده می گویند. و در دو مرحله انجام می گیرد.

پوشانده اولیه از رنگ کردن یا فرو بردن شکل در آبی که مخلوطی از سدیم سلیکات و اکسید کرومیک و آرد زارگون است تشکیل شده قبل از خشک شدن پوشش معمولاً مقداری پودر خاک نرم روی آن ریخته، برای پوشاندن و زمینه را برای پوشاندن نهائی فراهم می کند. بعد از خشک شدن یک قالب فلزی دور شکل پوشیده شده می گیرند و با پوشش دوم که معمولاً از موادی که آب با آلومینیوم گداخته شده یا خاک رس مذاب تشکیل شده پر می کنند. برای اطمینان مواد نسوز دور اولین لایه پوشش را فرا می گیرد و معمولاً قالب را تکان می دهند. قالب را در کوره با درجه حرارت کم قرار می دهند تا اینکه هم پوشش سخت می شود و هم موم ذوب می شود و از قالب خارج می شود که در دفعات بعد استفاده شود. این مراحل معمولاً 8 ساعت در دمای 95 درجه سانتیگراد طول می کشد. زمان و حرارت دقیقاً به نوع جنس موم بستگی دارد. سپس درجه حرارت تا 1000 درجه سانتیگراد افزایش می یابد. تا اینکه قالب کاملاً سخت شده و هیچگونه اثری از موم باقی نماند. قالب برای قالبگیری آماده است. (در شکل 4-2)

 

قالب گیری فلز:

 

زمانیکه قالب گرم است آنرا در کوره ای که با برق گرم می شود و مواد مذاب در آن موجود است قرار می دهند (شکل 5-2) در درجه حرارت مناسب کوره را بر عکس کرده تا مواد مذاب وارد قالب شود. برای اطمینان از اینکه مواد مذاب درون تمام حفره‌ها را پرکرده، معمولاً مواد را با فشار زیاد تزریق می­کنند. بصورتیکه تمام جزئیات نشان داده شود.سپس بعد ازسرد شدن (انجماد) قالب کوره به حالت اولیه برگردانده می شود و قالب برداشته می شود. سپس با چکش های باید و قلم مواد را از قالب خارج می کنند.

مزایای پوشاندن قطعه:

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف ) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0+ میلی متر ممکن است.

ب ) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری (آلیاژهای کروم و نیکل) در پروانه توربینها استفاده می شود.

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0 + میلی متر ممکن است.

ب) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات  دوباره صاف کاری ( آلیاژهای کروم و نیکل ) در پروانه توربینها استفاده می شود.

ج) از آنجائی که شکل موم دقیقاً مانند قالب نهائی است و تمام قسمتها مشخص
می شود و به قطعات ریز دیگر احتیاجی نمی باشد.

د) قطعات ممکن است در یک واحد درست  بشوند. اگر از روش دیگر استفاده
می گردید، ممکن بود قطعه از چند قسمت تشکیل شود و در کنار همدیگر مونتاژ شود.

شکل اصلی این رویه این است که وسایل و هزینه تولید بسیار بالاست ولی چون تراشکاری اضافی احتیاج نمی باشد. مانند قالب گیریهای دیگر این هزینه سنگین با صرفه و مورد قبول است.

قالب ریخته گری فلزی:

در قالب گیری که توضیح دادیم از پوششهای مصرفی استفاده می کنیم. ولی قالبهای ریخته گری بر مبنای استفاده از قالبهای فلزی دائمی است که به اسم قالبها می باشند. از آنجائیکه طراحی و تولیدشان گران است و از ماشین های گران قیمت استفاده می شود. این روش زمانی اقتصادی است که در حجم زیاد تولید شود.

فلزقالب ریخته گری فلز:

فلز مورد استفاده برای قالب ریخته گری بطور کلی محدود به گروهی از فلزات غیر آهنی است، بدین ترتیب برای مدت زیادی عمر می کنند که نقطه ذوب آنها پایین تر از آلیاژها است.

دو شرط در این است که باید سیالیت خوب داشته باشند و در ضمن در برابر «تردی داغ» هم حساس نباشد. تردی داغ عبارتی است که برای توصیف تردی قطعات ریختگی در دمای بالا به کار می رود آلیاژهای مورد استفاده شامل آلیاژهای پایه آلومینوم روی منیزیم قلع و سرب و به مقدار محدودی برنج و برنز هستند تا کنون رایج ترین فلزات مورد استفاده در این روش آلیاژهای پایه آلومینیوم به صورت زیر است:

مس 4% سیلسیم 5% آهن 3% نیکل 2% و منیزیم 5/0% از قطعات ریخته گری تحت فشار آلومینیوم در جاهایی استفاده می شود که نسبت به استحکام به وزن بالایی موردنیاز است یک آلیاژ پایه روی معمولی شامل 4% آلومینیوم 7/2% مس و 3% منیزیم است این آلیاژ خواص ریخته گری خوبی دارد و به علاوه این مزیت را هم دارد که دمای ریخته گری آن در مقایسه با آلیاژهای پایه قلع و سرب محدود است کاربرد اصلی آنها در ساخت یاتاقانهای فشار پایین و قطعاتی دیگر است که در آنها استحکام یک فاکتور با اهمیت نیست آلیاژهای منیزیم که گاهی اوقات با نام تجاری Elektron شناخته می شوند در بین آلیاژهای فوق از همه سبکتر هستند و در جایی استفاده می شود که مسئله وزن و مقاومت در برابر خوردگی بهترین ملاحظات موجود باشند.

فرآیند دای کست (ریخته گری تحت فشار)

ریخته گری تحت فشار به طور عمده شامل دو نوع فرایند است.

1) ثقلی             2) فشار بالا (تحت فشار)

دای کست ثقلی:

این فرآیند شبیه به ریخته گری ماسه است با این تفاوت که قالب از چدن یا از فولادهای آلیاژهای مخصوص ساخته می شوند در اینجا هم باید از سیستم راه گاهی استفاده کرد اما از آنجا که بر خلاف ریخته گری ماسه نمی توان قالب را پس از استفاده خُرد کرد باید قالب را به گونه ای استفاده کرد که بتوان دو تکه آن را از هم جدا کرد و قطعه را خارج نموده ساده ترین قالب مورد استفاده در این روش از دو لنگه قالب تشکیل می شود اما به دلیل پیچیدگی بسیاری از قطعات قالب باید طوری طراحی شود که تعدادی قطعات متحرک و قابل جداشدن هم داشته باشد و ماهیچه های هم درون آن قرار گیرد در هر حال طراح قابل سعی می کند که تعداد این گونه قطعات را به حداقل برساند تا هم هزینه قالب کاهش یابد وهم زمان سر هم کردن قالب قبل از ریختن مذاب بعدی کمتر شود علاوه بر پیش بینی برای جبران انقباض ناشی از انجماد و سرد شدن، طراح باید سیستم تهویه مناسبی را هم در نظر بگیرد تا از ایجاد تخلخل و حفره در قطعه جلوگیری شود.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود مقاله کامل درباره کاربرد ریخته گری