فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر)

اختصاصی از فی موو دانلود تحقیق روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

روش ژاکوبی برای حل مسائل غیر خطی

روش ژاکوبی در واقع تعمیمی از روش سیمپلکس برای حل مسائل خطی می‌باشد یا به عبارت دیگر روش ژاکوبی در حالتی خاص همان روش سیمپلکس می‌باشد.

تئوری روش مشتق مقید(ژاکوبی)

فرض می‎شود که توابع g, f دو بار پیوستة مشتق پذیر باشند (از ردة C2). ایدة روش ژاکوبی یافتن گوی بسته ای است که در تمام نقاط آن مشتق های جزئی مرتبه اول موجود و شرط g(x)=0 برآورده گردد. همان طور که می دانیم نقاط بحرانی نقاطی اند که مشتقات جزئی تابع در آن‌ها صفر گردد.

برای شناسایی نقاط بحرانی از شرایط کافی به شرح زیر استفاده می کنیم:

شرایط کافی برای نقطة بحرانی جهت اکسترمم بودن آن است که ماتریس هسیان محاسبه شده در نقطه

هنگامی که می نیمم است مثبت باشد .

هنگامی که ماکزیمم است منفی باشد .

برای روشن کردن این مفهوم تابع f(x1 , x2) را در نظر می گیریم. هدف می نیمم کردن تابع با توجه به محدودیت g1(x1 , x2) = x2 - b=0 می‎باشد. (b ثابت است.) منحنی ایجاد شده توسط سه نقطة C , B , A مقادیری از f را نمایش می‎دهد که محدودیت اعمال شده همواره برآورده می گردد. روش ژاکوبی، گرادیان f(x1 , x2) را در هر نقطه ای از منحنی ABC تعریف می‌کند. هر نقطه ای که مشتق آن برابر صفر گردد نشان دهنده یک نقطه بحرانی برای این مسئله مقید می‎باشد که در شکل زیر نقطة B ، نقطه موردنظر می‎باشد.

با استفاده از ق تیلور برای نقاط در همسایگی قابل قبول x داریم:

هنگامی که خواهیم داشت:

و از آنجا که g(x)=0 در نتیجه بنابراین خواهیم داشت:

حال یک دستگاه با (n+1) مجهول و (m+1) معادله خواهیم داشت که مجهولاتمان درایه‌های می باشند با مشخص شدن پیدا می‎شود. و این بدان معناست که در واقع m معادله با n مجهول داریم. اگر m>n آن گاه حداقل (m-n) معادله زائد می باشند. پس از حذف آنها، سیستم به تعداد کارایی از معادلات مستقل مانند کاهش خواهد یافت. برای حالتی که m=n باشد جواب می‎باشد و این نشان دهنده آن است که X همسایگی قابل قبول ندارد و فضای حل تنها از یک نقطه تشکیل یافته است. در اینجا این حالت موردنظر نیست و ما به بررسی حالت m < n می‎پردازیم.

X = ( Y, Z) Y= (y1 , ….ym) & Z= (z1 ,z2 …, zn-m)


دانلود با لینک مستقیم


دانلود تحقیق روش ژاکوبی برای حل مسائل غیرخطی (رشته ریاضی کامپیوتر)

مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف

اختصاصی از فی موو مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف دانلود با لینک مستقیم و پر سرعت .

مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف


مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف

مقاله پدیرفته شده به صورت سخنرانی در اولین کنفرانس بین الملی مدل های غیرخطی و بهینه سازی- دانشگاه شمال (آمل)- شهریور 1391

در این مقاله مدل جدیدی برای مکان­ یابی مراکزخدمت ­دهی با چند خدمت ­دهنده بیان می­شود که در آن تنوع خدمت وجود دارد. یعنی در هر مرکز خدمت­ دهی ممکن است، بیش از یک نوع خدمت ارایه شود. این مدل با فرض تنوع خدمت، به کمینه کردن دو هدف زمان سفرو انتظار مشتریان و هزینه­ های احداث مراکزخدمت ­دهی و به­ کارگیری خدمت­ دهندگان پرداخته است که در آن تخصیص مشتریان به مراکزخدمت­ دهی براساس فاصله­ از مرکز ، جاذبه­ و تعداد خدمت­ دهندگان هر مرکزخدمت­ دهی انجام شده است. برای حل مدل غیرخطی مسئله از الگوریتم فراابتکاری اجتماع ذرات پراکنده استفاده شده است. نتایج حاصل از مثال­ های عددی با اندازه ­های متفاوت نشان می­ دهد که این الگوریتم برای حل مدل در زمان مطلوب، مناسب است. 

نویسندگان: فضه پرتوی، مهدی سیف برقی، حمیدرضا پسندیده (از دانشگاه آزاد اسلامی، واحد قزوین)

فرمت فایل: PDF                         تعداد صفحه: 7

 


دانلود با لینک مستقیم


مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف

بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف

اختصاصی از فی موو بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف دانلود با لینک مستقیم و پر سرعت .

بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف


مقاله کنفرانس بین المللی: بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف

مقاله پدیرفته شده به صورت سخنرانی در اولین کنفرانس بین الملی مدل های غیرخطی و بهینه سازی- دانشگاه شمال (آمل)- شهریور 1391

در این مقاله مدل جدیدی برای مکان­ یابی مراکزخدمت ­دهی با چند خدمت ­دهنده بیان می­شود که در آن تنوع خدمت وجود دارد. یعنی در هر مرکز خدمت­ دهی ممکن است، بیش از یک نوع خدمت ارایه شود. این مدل با فرض تنوع خدمت، به کمینه کردن دو هدف زمان سفرو انتظار مشتریان و هزینه­ های احداث مراکزخدمت ­دهی و به­ کارگیری خدمت­ دهندگان پرداخته است که در آن تخصیص مشتریان به مراکزخدمت­ دهی براساس فاصله­ از مرکز ، جاذبه­ و تعداد خدمت­ دهندگان هر مرکزخدمت­ دهی انجام شده است. برای حل مدل غیرخطی مسئله از الگوریتم فراابتکاری اجتماع ذرات پراکنده استفاده شده است. نتایج حاصل از مثال­ های عددی با اندازه ­های متفاوت نشان می­ دهد که این الگوریتم برای حل مدل در زمان مطلوب، مناسب است. 

نویسندگان: فضه پرتوی، مهدی سیف برقی، حمیدرضا پسندیده (از دانشگاه آزاد اسلامی، واحد قزوین)

فرمت فایل: PDF                         تعداد صفحه: 7

 


دانلود با لینک مستقیم


بهینه سازی مدلی غیرخطی در مکان یابی مراکز خدمت دهی با تنوع خدمت در چارچوب صف