لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه77
فهرست مطالب
چکیده........................................................................................................ 1
مقدمه........................................................................................................ 2
فصل اول:
هدف، پیشینه تحقیق و روش کار........................................................................ 3
فصل دوم:
تعاریف و قضایای مقدماتی.............................................................................. 5
فصل سوم:
خواص اساسی از زیر مدول های اول............................................................... 17
فصل چهارم:
خواص M رادیکالها و قضایای مربوطه به –R مدول های متناهیا تولید شده.................. 37
فصل پنجم:
زیر مدول های تولید شده توسط پوش یک زیر مدول............................................... 42
فصل ششم:
رادیکال زیر مدول ها................................................................................... 55
فصل هفتم:
مدول های بسته.......................................................................................... 69
منابع فارسی.............................................................................................. 76
منابع انگلیسی............................................................................................ 77
چکیده انگلیسی........................................................................................... 78
واژه نامه.................................................................................................. 79
چکیده:
در این پایان نامه همه حلقه ها یکدار و جابجائی و همه مدول ها یکانی هستند این پایان نامه شامل یک مقدمه و هفت فصل است. فصل اول شامل هدف، پیشینه تحقیق و روش کار می باشد. فصل دوم شامل تعاریف و قضایای مقدماتی است. فصل سوم شامل خواص اساسی زیر مدول های اول است. فصل چهارم شامل خواص –M رادیکالها است هدف عمده فصل پنجم برهان قضیه زیر می باشد.
قضیه 1: فرض کنیم R یک حلقه باشد. آن گاه R در فرمول رادیکال صدق می کند در صورتی که یکی از شرایط زیر برقرار باشد.
الف) برای هر -R مدول آزاد F,F در فرمول رادیکال صدق کند.
ب) برای هر مدول A، .
ج) R تصویر همومرفیسم S است که S در فرمول رادیکال صدق می کند.
د) برای هر R- مدول A faithful، A در فرمول رادیکال صدق کند.
در فصل ششم R یک دامنه ایده آل اصلی است و A مدول آزاد Rn در نظر گرفته شده است. و هدف عمده فصل ششم و هفتم برهان قضیه زیر می باشد.
قضیه 2: فرض کنیم R یک دامنه ایده آل اصلی و P, A=Rn زیر مدولی از A باشد. آن گاه عبارات زیر هم ارزند.
الف: P جمعوند مستقیم A است.
ب: P بسته است.
ج: اگر آن گاه P اول است و dim P<n .
مقدمه:
در سال 1991 R.L.McCasland و M.E.Moore مقاله ای تحت عنوان رادیکال های زیر مدول ها نوشتند این پایان نامه شرحی است بر مقاله فوق.
فصل اول این پایان نامه شامل هدف و پیشینه تحقیق می باشد. فصل دوم شامل تعاریف و قضایای مقدماتی است. فصل سوم خواص زیر مدول های اول می باشد. فصل چهارم شامل خواص -M رادیکال ها می باشد.
فصل پنجم با تعریف مفاهیم پوش یک زیر مدول یا E(B) و M-radB شروع شده است. و ارتباط بین زیر مدول های تولید شده توسط آنها با رادیکال زیر مدول ها بررسی شده و همچنین شرایط هم ارزی که یک حلقه می تواند در فرمول رادیکال صدق کند بررسی شده است.
در فصل ششم حلقه R یک حلقه PID و مدول A نیز مدول آزاد Rn در نظر گرفته شده است و نشان می دهیم اگر B زیر مدول A باشد آن گاه اگر و تنها اگر dim B=dim A و در فصل هفتم با تعریف مدول های بسته نشان داده می شود که اگر R دامنه ایده آل اصلی و P , A=Rn زیر مدول A باشد آن گاه شرایط زیر هم ارزند.
1) P جمعوند مستقیم A است. 2) P بسته است. 3) اگر باشد آن گاه P اول است و dim P<n .
فصل اول:
هدف، پیشینه تحقیق و روش کار
هدف:
بررسی خواص اساسی از زیر مدول های اول و خواص -M رادیکالها و هدف نهایی بررسی مفاهیم پوش یک زیر مدول و برهان قضیه 1 و 2 گفته شده در مقدمه و چکیده پایان نامه می باشد.
پیشینه تحقیق و روش کار:
برای گردآوری این پایان نامه از ژورنالهای مختلف ریاضی در گرایش جبر موجود در کتابخانه های معتبر مانند IPM استفاده شده است و هنوز در هیچ کتاب درسی در سطح کارشناسی ارشد و دکترا مفاهیم فوق نوشته و بررسی نشده است.
فصل دوم:
تعاریف و قضایای مقدماتی
تعریف(1-2): مجموعه R همراه با دو عمل دوتائی + و . را یک حلقه گوئیم اگر،
الف) (R , +) یک گروه آبلی باشد.
ب) به ازاء R a,b,c ، a(b c) = (a b)c
ج) به ازاء هر R a,b,c
(قانون توزیع پذیری چپ) a(b+c) = ab+ac
(قانون توزیع پذیری راست) (b+c) a= ba+ca
تعریف(2-2): حلقه R را تعویض پذیر(یا جابجائی) گوئیم هر گاه:
تعریف(3-2): اگر حلقه R نسبت به عمل ضرب دارای عضو همانی باشد آنگاه این عضو را با 1R، یا به طور ساده با 1، نمایش می دهیم و آن را یکه R می نامیم
تذکر: در سراسر پایان نامه R حلقه جابجایی و یکدار فرض می شود.
تذکر: اگر R حلقه ای یکدار بوده و به ازاء هر داشته باشیم ab=ba=1 آنگاه a را یک واحد(یا عضو وارون پذیری) می نامیم.
تعریف(4-2): گوئیم حلقه R بدون مقسوم علیه صفر است هر گاه:
یا
تعریف(5-2): هر حلقه جابجائی، یکدار و بدون مقسوم علیه صفر را دامنه صحیح می نامیم.
تعریف(6-2): زیر مجموعه S از حلقه R یک زیر حلقه R است اگر:
تعریف(7-2): زیر حلقه I از R را ایده آل R نامیم هر گاه:
تعریف(8-2): ایده آل I از حلقه R را، ایده آل سره نامند هر گاه: و می نویسیم :
تعریف(9-2): ایده آل P از حلقه R را ایده آل اول نامند هر گاه:
یا
تعریف(10-2): اگر I یک ایده آل از حلقه R باشد آنگاه:
را حلقه خارج قسمتی R بر I نامند.
تذکر: اگر R جابجائی و یکدار باشد آنگاه نیز جابجائی و یکدار است.
لم(11-2): فرض کنید P ایده آل حلقه R باشد آنگاه:
P ایده آل اول است اگر و تنها اگر دامنه صحیح باشد.
تعریف(12-2): دامنه صحیح D را دامنه ددکنید نامند هر گاه هر ایده آل آن به صورت حاصل ضرب، ایده آلهای اول باشد.
تعریف(13-2): ایده آل سره M از حلقه R را ایده آل ماکزیمال نامند هر گاه M داخل هیچ ایده آل سره از R قرار نگیرد.
تعریف(14-2): فرض کنیم R حلقه جابجائی و یکدار باشد. در این صورت R را یک میدان نامیم هر گاه هر عضو ناصفر آن دارای وارون ضربی باشد.
لم(15-2): فرض کنیم R حلقه و M ایده آلی از حلقه R باشد آنگاه:
M یک ایده آل ماکزیمال R است اگر و تنها اگر میدان باشد.
تعریف(16-2): فرض کنیم X زیر مجموعه ای از حلقه R باشد. فرض کنیم خانواده همه
ایده آلهای R شامل X باشد. آنگاه را ایده آل تولید شده توسط X نامیده و با علامت(X) نمایش
می دهند.
تذکر: علامت X مولدهای ایده آل(X) نامیده می شود.
اگر در این صورت گویند(X) یک ایده آل متناهیا تولید شده است.
تذکر: در حالت خاص وقتی که X={a} باشد داریم:
تعریف(17-2): حلقه R را یک حوزه ایده آل اصلی نامیم هر گاه R حوزه صحیح باشد و هر ایده آل آن توسط یک عضو تولید شود.
تعریف(18-2): در حلقه R، گوئیم عنصر b,a را می شمارد و می نویسیم a | b هر گاه:
تعریف(19-2): عنصر p را در حلقه R اول گوییم هر گاه:
یا
تعریف(20-2): حلقه R را حوزه تجزیه یکتا گویند هر گاه R حوزه صحیح باشد و هر عضو آن را بتوان به صورت حاصلضرب متناهی و منحصر بفرد از عناصر اول نوشت.
تعریف(21-2): ایده آل P از حلقه R را یک ایده آل اولیه نامیم هر گاه اولا و ثانیا
تعریف(22-2): فرض کنیم I ایده آل حلقه R باشد. رادیکال ایده آل I را به صورت نمایش می دهند و عبارت است از:
لم(23-2): اگر R یک حلقه و I ایده آلی از حلقه R باشد در اینصورت که در آن P ایده آل اول حلقه R و شامل I است.
لم(24-2): اگر P یک ایده آل اولیه باشد آنگاه رادیکال P یک ایده آل اول است.
تعریف(25-2): فرض کنیم Q یک ایده آل اولیه باشد و داشته باشیم ، آنگاه گوئیم Q یک ایده آل -P اولیه است.
مثال(26-2): در حلقه Z از اعداد صحیح به ازاء هر عدد اول p ایده آل تولید شده توسط p که آن را به صورت(p) نمایش می دهیم یک ایده آل اول است.
مثال(27-2): ایده آلهای (p4) , (p3) , (p2) و ... و ایده آلهای اولیه هستند زیرا:
پس (pn) یک -(p) ا
مقاله در مورد رادیکال زیر مدول ها