فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله تعریف داده کاوی

اختصاصی از فی موو مقاله تعریف داده کاوی دانلود با لینک مستقیم و پر سرعت .

مقاله تعریف داده کاوی


مقاله تعریف داده کاوی

اصطلاح Data Mining همانطور که از ترجمه آن به داده­کاوی مشخص می­شود، به مفهوم استخراج اطلاعات نهان و یا الگوها و روابط مشخص در حجم زیادی از داده‌های یک یا چند بانک اطلاعاتی بزرگ است. اطلاعات استخراج شده در تعریف Data Mining بطور ضمنی به معنی اطلاعاتی است که بر اساس آن بتوان به نتایجی دست یافت که بطور معمول ملموس نیستند. در این تعریف بر بزرگ بودن بانکهای اطلاعاتی و یا حجم زیاد داده‌های مورد پردازش تاکید می‌شود. علت این است که از نظر آماری و تئوری اطلاعات، تجزیه و تحلیل داده‌ها و یا آنطور که در این اصطلاح تعبیر می‌شود، کاوش در حجم کم داده­های یک بانک به نتایج قابل قبولی منجر نمی‌شود. به کمک ابزارهای Data Mining می‌توان مقادیر متغیرهای را پیش­بینی و توصیف نمود. این ابزارها در فرایندهای تصمیم‌گیری متکی بر اطلاعات و دانش [1] کاربر فراوان دارند و فعالیت­های تجاری نوین و مدرن امروزه به شدت بر آن متکی است. فرایند Data Mining را نباید با روش‌های متداول آنالیز داده و اطلاعات و سیستم­های تصمیم‌گیری معمولی یکی دانست. به کمک روش‌های Data Mining می‌توان به پرسش­هایی (عمدتاً تجاری) پاسخ گفت که بطور سنتی عملاً امکان وجود ندارد.

در متون آکادمیک تعاریف گوناگونی برای داده کاوی ارائه شده‌اند. در برخی از این تعاریف داده­کاوی در حد ابزاری که کاربران را قادر به ارتباط مستقیم با حجم عظیم داده­ها می‌سازد معرفی گردیده است و در برخی دیگر، تعاریف دقیقتر که در آنها به کاوش در داده­ها توجه می‌شود موجود است. برخی از این تعاریف عبارتند از:

  • داده­کاوی عبارت است از فرایند استخراج اطلاعات معتبر، از پیش ناشناخته، قابل فهم و قابل اعتماد از پایگاه داده­های بزرگ و استفاده از آن در تصمیم‌گیری در فعالیت­های تجاری مهم.
  • اصطلاح داده­کاوی به فرایند نیم خودکار تجزیه و تحلیل پایگاه داده­های بزرگ به منظور یافتن الگوهای مفید اطلاق می‌شود.
  • داده­کاوی یعنی جستجو در یک پایگاه داده­ها برای یافتن الگوهایی میان داده­ها.
  • داده­کاوی عبارتست از فرایند یافتن دانش از مقادیر عظیم داده­های ذخیره شده در پایگاه داده، انباره داده و یا دیگر مخازن اطلاعات.
  • داده­کاوی یعنی استخراج دانش کلان، قابل استناد و جدید از پایگاه داده­های بزرگ.
  • داده­کاوی یعنی تجزیه و تحلیل مجموعه داده­های قابل مشاهده برای یافتن روابط مطمئن بین داده­ها.

همانگونه که در تعاریف گوناگون داده­کاوی مشاهده می­شود، تقریباً در تمامی تعاریف به مفاهیمی چون استخراج دانش، تحلیل و یافتن بین داده­ها اشاره شده است.


 
 
 
 
 
 
 
 

این مقاله به صورت  ورد (docx ) می باشد و تعداد صفحات آن 76صفحه  آماده پرینت می باشد

چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد

مقالات را با ورژن  office2010  به بالا بازکنید


دانلود با لینک مستقیم


مقاله تعریف داده کاوی

پایان نامه : داده کاوی در پایگاه داده های بزرگ

اختصاصی از فی موو پایان نامه : داده کاوی در پایگاه داده های بزرگ دانلود با لینک مستقیم و پر سرعت .

پایان نامه : داده کاوی در پایگاه داده های بزرگ


پایان نامه :  داده کاوی در پایگاه داده های بزرگ

پایان نامه :  داده کاوی در پایگاه داده های بزرگ

 

شرح مختصر : داده کاوی، فرایند مرتب سازی و طبقه بندی داده های حجیم و آشکارسازی اطلاعات مرتبط باهم می باشد. امروزه داده کاوی به عنوان یکی از ابزارهای بسیار مهم مدیران جهت شناخت وضعیت دقیق تر سازمان و همچنین کمک در اتخاذ تصمیمات مناسب کاربرد دارد. با استفاده از این تکنیک، داده های موجود در سازمان با بکارگیری ابزارهای نرم افزاری، مورد بررسی و تحلیل دقیق قرار می گیرد تا الگوهای پنهان و پیچیده ای که در آنها وجود دارد کشف و استخراج گردد. داده کاوی را می توان نسل سوم تکنولوژیهایی نامید که با داده سروکار دارند. در نسل اول یا نسل سنتی، فقط انجام پرس و جو های ساده امکان پذیر بود، مثلا تعداد فروش یک کالای خاص چقدر است؟ میزان خرید یک مشتری خاص در ماه جاری چه مبلغی است؟ در نسل دوم یا همان پردازش لحظه ای برخط (OLAP) امکان پرس و جوی همزمان چند بعدی فراهم گردید. در این روش به عنوان مثال به سوالاتی مانند: «میزان فروش محصولات به تفکیک فروشنده، خریدار و مسیر خاص چقدر است؟ » بصورت لحظه ای و با استفاده از مکعب تصمیم و گزارش ماتریسی پاسخ داده می شود. اما در نسل سوم یا همان داده کاوی فقط مساله پرس و جو و دریافت گزارش ها از داده ها نیست، بلکه از حجم انبوه داده ها، الگوهایی کشف می شود که هیچ وقت امکان کشف این الگوها در OLAP یا روش سنتی وجود نداشت. انواع اطلاعات و الگوهایی که از طریق داده کاوی بدست می آیند و کاربرد دارند عبارتند از: وابستگی، تسلسل و توالی، طبقه بندی، خوشه بندی و پیش بینی. برای استخراج این الگوها اغلب از روشهای نوینی مانند شبکه عصبی و درختهای تصمیم استفاده می شود. در عمل برای امکان انجام داده کاوی و استفاده از تکنیکهای فوق الذکر، ابتدا باید نسبت به ایجاد یک انبار داده مناسب اقدام کرد. یک انبارداده در حقیقت پایگاه داده ای است که داده های جاری و همچنین سوابق قبلی تراکنشها را در خود ذخیره کرده و با منابع خارج سازمان نیز ارتباط برقرار می کند. اهداف کلی این مقاله عبارتند از ارایه تعریف دقیقی از انبار داده، بررسی تکنیکها و کاربردهای داده کاوی و کاربرد آن در مدیریت، معرفی شبکه عصبی به عنوان یکی از روشهای اجرای داده کاوی و بیان مفهوم درخت تصمیم و ارتباط آن با داده کاوی.

فهرست :

چکیده

مقدمه ای بر داده‌کاوی

فصل اول

 چه چیزی سبب پیدایش داده کاوی شده است

 مراحل کشف دانش

 جایگاه داده کاوی در میان علوم مختلف

 داده کاوی چه کارهایی نمی تواند انجام دهد؟

 داده کاوی و انبار داده ها

 داده کاوی و OLAP

 کاربرد یادگیری ماشین و آمار در داده کاوی

فصل دوم

 توصیف داده ها در داده کاوی

 خلاصه سازی و به تصویر در آوردن داده ها

 خوشه بندی

 تحلیل لینک

فصل سوم

 مدل های پیش بینی داده ها

Classification

Regression

Time series

فصل چهارم

 مدل ها و الگوریتم های داده کاوی

 شبکه های عصبی

Decision trees

Multivariate Adaptive Regression Splines(MARS)

Rule induction

Knearest neibour and memorybased reansoning(MBR)

 رگرسیون منطقی

 تحلیل تفکیکی

 مدل افزودنی کلی (GAM)

Boosting

فصل پنجم

  سلسله مراتب انتخابها

فصل ششم

 مراحل فرایند کشف دانش از پایگاه داده های بزرگ

 انبارش داده ها

انتخاب داده ها

تبدیل داده ها

کاوش در داده ها

تفسیر نتیجه

فصل هفتم

عملیات های داده کاوی

مدل سازی پیشگویی کننده

تقطیع پایگاه داده ها

تحلیل پیوند

فصل هشتم

قابلیت هایdata mainig

داده کاوی وانبار داده ها

داده کاوی آمار ویادگیری ماشین

کاربرد های داده کاوی

داده کاوی موفق

تحلیل ارتباطات

فصل نهم

طبقه بندی

حدس بازگشتی

سری های زمانی

درخت های انتخاب

استنتاج قانون

الگوریتم های ژنتیک

فصل دهم

فرایند های داده کاوی

مدل فرایند دو سویه

فصل یازدهم

ساختن یک پایگاه داده داده کاوی

جستجوی داده

آماده سازی داده برای مدل سازی

ساختن مدل برای داده کاوی

تائید اعتبار ساده

ارزیابی وتفسیر

فصل دوازدهم

ماتریس های پیچیدگی

ایجادمعماری مدل ونتایج

فصل سیزدهم

نتیجه گیری

منابع ومآخذ


دانلود با لینک مستقیم


پایان نامه : داده کاوی در پایگاه داده های بزرگ

عنوان مقاله : مروری بر داده کاوی و بررسی شبکه های عصبی‎

اختصاصی از فی موو عنوان مقاله : مروری بر داده کاوی و بررسی شبکه های عصبی‎ دانلود با لینک مستقیم و پر سرعت .

عنوان مقاله : مروری بر داده کاوی و بررسی شبکه های عصبی‎


عنوان مقاله :  مروری بر داده کاوی و بررسی شبکه های عصبی‎

عنوان مقاله :  مروری بر داده کاوی و بررسی شبکه های عصبی‎

 

شرح مختصر : چندین دهه است که شرکت ها اطلاعات را جمع آوری می نمایند تا با ایجاد یک پایگاه داده انبوه اطلاعات را ذخیره کنند، با این حال که اطلاعات در دسترس آنها قرار دارد فقط تعداد کمی از شرکت ها قادر شده اند به ارزش واقعی ذخیره شده در آنها پی ببرند سوال این شرکتها این است که چگونه میتوان به ارزش واقعی این اطلاعات دست یافت؟ پاسخ آن داده کاوی است، که امروزه در بسیاری از صنعتها از جمله پزشکی، آموزش، ورزش و بسیاری از صنایع دیگر مورد استفاده قرار میگیرد. تکنیکهای بسیاری جهت داده کاوی وجود دارد از جمله شبکه های عصبی مصنوعی، رگرسیون، درخت تصمیم و غیره. همچنین طراحی شده است اشاره SAS که توسط شرکت JMP نرم افزارهایی نیز برای داده کاوی ایجاد شده است که میتوان به نرم افزار کرد. این مقاله به معرفی داده کاوی و برخی از روشهای داده کاوی و همچنین محیطهایی که از داده کاوی بهره میبرند به همراه نرم افزار های آن پرداخته است.

فهرست :

چکیده

مقدمه

داده کاوی

تکنیک های داده کاوی

دسته بندی

رگرسیون گیری

خوشه بندی

تجمع و همبستگی

درخت تصمیم گیری

ویزگی های درخت تصمیم

الگوریتم ژنتیک

شبکه های عصبی مصنوعی

ساختار شبکه عصبی

نورون

معماری شبکه عصبی

شبکه های پیش خور تک لایه

انواع یادگیری در شبکه های عصبی مصنوعی

داده کاوی در پزشکی

داده کاوی در سلامت

نرم افزار های داده کاوی

نتیجه گیری

مراجع


دانلود با لینک مستقیم


عنوان مقاله : مروری بر داده کاوی و بررسی شبکه های عصبی‎