فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

Engineers’ Guide to Pressure Equipment, The Pocket Reference, Clifford Matthews, 2001 کتاب

اختصاصی از فی موو Engineers’ Guide to Pressure Equipment, The Pocket Reference, Clifford Matthews, 2001 کتاب دانلود با لینک مستقیم و پر سرعت .

402 صفحه pdf\

Engineers’ Guide to Pressure Equipment

Professional Engineering Publishing Limited


London and Bury St Edmunds, UK

سرفصلها

Chapter 1 Websites: Quick Reference 1
1.1 Organizations and associations 1
1.2 General technical information 4
1.3 Directives and legislation 6
1.4 The KKS power plant classification system 7
Chapter 2 Pressure Equipment Types and Components 11
2.1 What is pressure equipment? 11
2.2 Pressure equipment categories 11
2.3 Pressure equipment symbols 13
Chapter 3 Basic Design 21
3.1 Introduction – the influence of codes and standards 21
3.2 Vessel design – basic points 21
3.2.1 Design basis 21
3.2.2 Safety first – corrosion allowance and welded
joint efficiency 23
3.2.3 Pressure vessel cylinders 24
3.2.4 Vessel classes 25
3.2.5 Heads 25
3.2.6 Openings and compensation 29
3.2.7 Inspection openings 32
3.2.8 Pipes and flanges 33
3.2.9 Pads 33
3.2.10 Vessel supports 34
3.3 Simple pressure vessels (SPVs) – basic design 35
3.3.1 Material selection 35
3.3.2 Welds 37
3.3.3 Stress calculations 37
vi Engineers’ Guide to Pressure Equipment
3.4 Gas cylinders – basic design 39
3.5 Heat exchangers – basic design 47
3.5.1 Contact-type exchangers 47
3.5.2 Surface-type exchangers 47
3.5.3 Thermal design 47
3.5.4 Special applications 53
3.6 Design by Analysis (DBA) – pr EN 13445 53
3.6.1 What does DBA offer? 53
3.6.2 How does DBA fit into pr EN 13445? 55
3.6.3 DBA – the technical basis 55
Chapter 4 Applications of Pressure Vessel Codes 59
4.1 Principles 59
4.2 Code compliance and intent 59
4.3 Inspection and test plans (ITPs) 60
4.4 Important code content 63
4.5 PD 5500 64
4.5.1 PD 5500 and the PED ESRs 70
4.6 The ASME vessel codes 76
4.6.1 Summary 76
4.6.2 Allowable stresses 81
4.6.3 Cylindrical vessel shells 81
4.6.4 Flat plates, covers, and flanges 85
4.6.5 Vessel openings – general 90
4.6.6 Heat exchangers 91
4.6.7 Special analyses 91
4.6.8 ASME ‘intent’ 95
4.7 TRD 96
4.8 Air receivers 98
4.9 Shell boilers: BS 2790 and EN 12953 101
4.10 Canadian standards association B51-97, part 1 boiler,
pressure vessel, and piping code – 1997 106
4.11 CODAP – unfired pressure vessels 107
4.12 Water tube boilers: BS 1113/pr EN 12952 107
4.13 Materials and referenced standards – quick reference 109
4.14 Pressure vessel codes – some referenced standards 111
Chapter 5 Manufacture, QA, Inspection, and Testing 113
5.1 Manufacturing methods and processes 113
5.2 Vessel visual and dimensional examinations 114
5.2.1 The vessel visual examination 114

5.2.2 The vessel dimensional check 116
5.2.3 Vessel markings 118
5.3 Misalignment and distortion 118
5.3.1 What causes misalignment and distortion? 118
5.3.2 Toleranced features 119
5.4 Pressure and leak testing 122
5.4.1 The point of a pressure test 122
5.4.2 The standard hydrostatic test 123
5.4.3 Pneumatic testing 124
5.4.4 Vacuum leak testing 125
5.5 ASME certification 126
5.5.1 The role of the AI (Authorized Inspector) 126
5.5.2 Manufacturers’ data report forms 127
5.5.3 The code symbol stamps 129
5.5.4 ASME and the European Pressure Equipment
Directive (PED) 131
5.6 European inspection terms and bodies: EN 45004: 1995 132
5.7 The role of ISO 9000 133
5.7.1 The objectives of the changes 133
5.7.2 What will the new standards be? 134
5.7.3 What are the implications? 134
5.7.4 The ‘new format’ ISO 9001: 2000 134
Chapter 6 Flanges, Nozzles, Valves, and Fittings 137
6.1 Flanges 137
6.2 Valves 141
6.2.1 Types of valves 141
6.2.2 Valve technical standards 141
6.3 Safety devices 151
6.3.1 Safety relief valves – principles of operation 152
6.3.2 Terminology – safety valves 153
6.4 Nozzles 155
6.5 Power piping – ASME/ANSI B31.1 code 158
6.6 Fittings 161
6.6.1 Pressure equipment fittings 161
6.6.2 Pipework classification 161
Chapter 7 Boilers and HRSGs 167
7.1 Fundamentals of heat transfer 167
7.1.1 Specific heat, c 167
7.1.2 Enthalpy, h 167
viii Engineers’ Guide to Pressure Equipment
7.1.3 Latent heat 168
7.1.4 Steam characteristics 168
7.1.5 Gas characteristics 173
7.2 Heat recovery steam generators (HRSGs) 173
7.2.1 General description 173
7.2.2 HRSG operation 176
7.2.3 HRSG terms and definitions 180
7.2.4 HRSG materials 183
Chapter 8 Materials of Construction 185
8.1 Plain carbon steels — basic data 185
8.2 Alloy steels 185
8.3 Stainless steels – basic data 186
8.4 Non-ferrous alloys – basic data 189
8.5 Material traceability 190
8.6 Materials standards – references 192
Chapter 9 Welding and NDT 195
9.1 Weld types and symbols 195
9.2 Weld processes 195
9.3 Welding standards and procedures 203
9.4 Destructive testing of welds 205
9.4.1 Test plates 205
9.4.2 The tests 205
9.5 Non-destructive testing (NDT) techniques 209
9.5.1 Visual examination 209
9.5.2 Dye penetrant (DP) testing 209
9.5.3 Magnetic particle (MP) testing 212
9.5.4 Ultrasonic testing (UT) 213
9.5.5 Radiographic testing (RT) 219
9.6 NDT acronyms 223
9.7 NDT: vessel code applications 225
9.8 NDT standards and references 227
Chapter 10 Failure 229
10.1 How pressure equipment materials fail 229
10.1.1 LEFM method 230
10.1.2 Multi-axis stresses states 231
10.2 Fatigue 232
10.2.1 Typical pressure equipment material fatigue limits 233
10.2.2 Fatigue strength – rules of thumb 234

10.3 Creep 235
10.4 Corrosion 238
10.4.1 Types of corrosion 238
10.4.2 Useful references 241
10.5 Boiler failure modes 241
10.6 Failure-related terminology 244
Chapter 11 Pressure Equipment: Directives and Legislation 249
11.1 Introduction: what’s this all about? 249
11.1.1 The driving forces 249
11.1.2 The EU ‘new approaches’ 250
11.2 The role of technical standards 250
11.2.1 Harmonized standards 250
11.2.2 National standards 251
11.2.3 The situation for pressure equipment 251
11.3 Vessel ‘statutory’ certification 253
11.3.1 Why was certification needed? 253
11.3.2 What was certification? 253
11.3.3 Who could certificate vessels? 254
11.4 The CE mark – what is it? 255
11.5 Simple pressure vessels 255
11.6 The simple pressure vessels directive and regulations 256
11.6.1 SPVs – summary 256
11.6.2 Categories of SPVs 257
11.6.3 SPV harmonized standards 264
11.7 Transportable pressure receptacles: legislation and
regulations 265
11.7.1 TPRs legislation 265
11.8 The pressure equipment directive (PED) 97/23/EC 271
11.8.1 PED summary 271
11.8.2 PED – its purpose 273
11.8.3 PED – its scope 273
11.8.4 PED – its structure 274
11.8.5 PED – conformity assessment procedures 275
11.8.6 Essential safety requirements (ESRs) 294
11.8.7 Declaration of conformity 311
11.8.8 Pressure equipment marking 312
11.9 Pressure Equipment Regulations 1999 312
11.9.1 The Pressure Equipment regulations – structure 312
11.10 Notified Bodies 314
11.10.1 What are they? 314
x Engineers’ Guide to Pressure Equipment
11.10.2 UK Notified Bodies 314
11.11 Sources of information 317
11.11.1 Pressure system safety – general 317
11.11.2 Transportable pressure receptacles (gas cylinders) 318
11.11.3 The simple pressure vessel directive/regulations 318
11.11.4 The pressure equipment directive 318
11.11.5 The pressure equipment regulations 319
11.11.6 PSSRs and written schemes 319
Chapter 12 In-service Inspection 321
12.1 A bit of history 321
12.2 The Pressure Systems Safety Regulations (PSSRs) 2000 322
Chapter 13 References and Information Sources 325
13.1 European Pressure Equipment Research Council (EPERC) 325
13.2 European and American associations and organizations
relevant to pressure equipment activities 327
13.3 Pressure vessel technology references 335
Appendix 1 Steam Properties Data 337
Appendix 2 Some European Notified Bodies (PED) 343
Notified Bodies (PED Article 12) 343
Recognized Third-Party Organizations (PED Article 13) 348
Appendix 3 Standards and Directives Current Status 351


دانلود با لینک مستقیم


Engineers’ Guide to Pressure Equipment, The Pocket Reference, Clifford Matthews, 2001 کتاب

دانلود کتاب Companion Guide to the ASME Boiler & Pressure Vessel Code 4Ed VOLUME 1

اختصاصی از فی موو دانلود کتاب Companion Guide to the ASME Boiler & Pressure Vessel Code 4Ed VOLUME 1 دانلود با لینک مستقیم و پر سرعت .

دانلود کتاب Companion Guide to the ASME Boiler & Pressure Vessel Code 4Ed VOLUME 1


دانلود کتاب Companion Guide to the ASME Boiler & Pressure Vessel Code 4Ed VOLUME 1
آخرین ویرایش کتاب نایاب و ارزشمند آموزش مشارکتی ASME BPVC دوره 1

Companion Guide to the ASME Boiler & Pressure Vessel Code Fourth Edition VOLUME 1

Criteria and Commentary on Select Aspects of the
Boiler & Pressure Vessel and Piping Codes

  • Publisher: ASME
  • Publish Date: 2012
  • Pages: 765
  • Language: English

 

 

 

ناشر : موسسه ASME

سال انتشار : 2012

فرمت کتاب: PDF

 

 

سرفصلهای آموزشی کتاب:

 

Dedication to the First Edition

Robert E. Nickell and William E. Cooper

Acknowledgements (to the First Edition)

Acknowledgements (to the Second Edition)

Acknowledgements (to the Third Edition)

Acknowledgements (to the Fourth Edition)

Contributor Biographies

Preface to the First Edition

K. R. Rao and Robert E. Nickell

Preface to the Second Edition

K. R. Rao

Preface to the Third Edition

K. R. Rao

Preface to the Fourth Edition

K. R. Rao

Introduction

Organization and Operation of the ASME

Boiler and Pressure Vessel Committee

PART 1: POWER BOILERSSECTIONS I & VII

OF B&PV CODE

CHAPTER 1 Introduction to Power Boilers

John R. MacKay

1.1 Introduction

1.2 History and Philosophy of Section I

1.3 The Organization of Section I

1.4 Scope of Section I: Pressure Limits and

Exclusions

1.5 Distinction Between Boiler Proper Piping and

Boiler External Piping
1.6 How and Where Section I is Enforced and

Effective Dates

1.7 Fundamentals of Section I Construction

1.8 References

1.9 Design Exercises

CHAPTER 2 Section VIIRecommended

Guidelines for the Care of Power Boilers

James T. Pillow, Edmund W. K. Chang and

Geoffrey M. Halley

2.1 Introduction - Chapter 2

2.2 Introduction - Section VII

2.3 Fundamentals—Subsection C1

2.4 Boiler Operation—Subsection C2

2.5 Boiler Auxiliaries—Subsection C3

2.6 Appurtenances—Subsection C4

2.7 Instrumentation, Controls, and Interlocks—

Subsection C5

2.8 Inspection—Subsection C6

2.9 Repairs, Alterations, and Maintenance—

Subsection C7

2.10 Control of Internal Chemical Conditions—

Subsection C8

2.11 Preventing Boiler Failures—Subsection C9

2.12 Final Notes

2.13 References

PART 2: SECTION II OF B&PV CODE

CHAPTER 3 PART 2, Section IIMaterials and

Specifications

Elmar Upitis, Richard A. Moen, Marvin L. Carpenter,

John F. Grubb, Richard C. Sutherlin, Jeffrey Henry,

C.W. Rowley and Anne Chaudouet

3.1 History of Materials in the ASME Boiler and

Pressure Vessel Code

3.2 Basis for Acceptance of Materials for Code

Construction— Section II, Part A: Ferrous

Material Specifications

3.3 Basis for Acceptance of Materials for Code

Construction—Section II, Part B: Nonferrous

Material Specifications

3.4 Section II, Part C: Specification for Welding

Rods, Electrodes, and Filler Metals
3.5 Basis for Acceptance of Materials for Code

Construction—Section II, Part D: Properties

3.6 Non-metallic Material Used in Structural

Applications

3.7 Basis for Acceptance of Material for Code

Construction—Section II, International

Material Specifications

PART 3: SECTION IIIRULES FOR CONTRUCTION

OF NUCLEAR POWER PLANT COMPONENTS

SECTION III DIVISION 1

CHAPTER 4 A Commentary for Understanding and

Applying the Principles of the ASME Boiler and

Pressure Vessel Code

Roger F. Reedy

4.1 Introduction

4.2 Design Factors Used in the ASME Code

4.3 Design Specifications and Design Reports

4.4 Section III Versus Section VIII

4.5 Design Life and Commutative-Usage Factors

4.6 Service-Level Loadings

4.7 Seismic Evaluations

4.8 Engineers, Design, and Computers

4.9 Containment Vessels

4.10 Tolerances, Significant Figures, and Nominal

Dimensions

4.11 Corrosion and Erosion

4.12 Forming Operations

4.13 Post–Weld Heat Treatment

4.14 Nondestructive Examination

4.15 Hydrostatic Test

4.16 Quality Assurance

4.17 Design Loadings and Stresses Compared to

Actual Conditions

4.18 Post-Construction Postulated Loadings and

Stresses

4.19 Maintenance of Design Margins

4.20 Thermal Relief Devices

4.21 Code Cases

4.22 ASME Interpretations

4.23 Code Simplification

4.24 Future Considerations for Cyclic Service

4.25 New ASME Code–2007 Edition of Section VIII,

Division 2

4.26 Summary

4.27 References

CHAPTER 5 Subsection NCAGeneral

Requirements for Division 1 and Division 2

Richard W. Swayne

5.1 Introduction

5.2 Article NCA-1000 Scope of Section III

5.3 Article NCA-2000 Classification of Components

and Supports

5.4 Article NCA-3000 Responsibilities and Duties

5.5 Article NCA-4000 Quality Assurance
5.6 Article NCA-5000 Authorized Inspection

5.7 Article NCA-8000 Certificates, Nameplates,

Code Symbol Stamping, and Data Reports

5.8 Article NCA-9000 Glossary

CHAPTER 6 Subsection NBClass 1 Components

David P. Jones and Chakrapani Basavaraju

6.1 Introduction

6.2 Design

6.3 Analysis

6.4 Primary Stress Limits

6.5 Primary-Plus-Secondary Stress Limits

6.6 Fatigue

6.7 Special Procedures

6.8 Elastic-Plastic FEA

6.9 References

6.10 Summary of Changes

CHAPTER 7 Section III: Subsections NC and

NDClass 2 and 3 Components

Chakrapani Basavaraju and Marcus N. Bressler

7.0 Introduction to Chapter 7.0

7.1 Articles NC-1000 and ND-1000

7.2 Articles NC-2000 and ND-2000, Material

7.3 Articles NC-3000 and ND-3000 (Design)

7.4 Articles NC-4000 and ND-4000 (Fabrication

and Installation)

7.5 Articles NC-5000 and ND-5000 (Examination)

7.6 Articles NC-6000 and ND-6000 (Testing)

7.7 Articles NC-7000 and ND-7000 (Overpressure

Protection)

7.8 Articles NC-8000 and ND-8000 (Nameplate,

Stamping, and Reports)

7.9 Summary of Changes

7.10 Summary of Changes

7.11 References

CHAPTER 8 Subsection NB, NC, ND-3600 Piping

Jack R. Cole and Donald F. Landers

8.1 Background

8.2 Nuclear Class 1, NB-3600

8.3 Nuclear Class 2 and 3 NC/ND-3600

8.4 Design Process

8.5 Design Specification Discussion

8.6 References

CHAPTER 9 Subsection NEClass MC

Components

Roger F. Reddy

9.1 Introduction

9.2 Scope of Subsection NE

9.3 Boundaries of Jurisdiction of Subsection NE

9.4 General Material Requirements

9.5 Certified Material Test Reports

9.6 Material Toughness Requirements

9.7 General Design Requirements

9.8 Qualifications of Professional Engineers
9.9 Owner’s Design Specifications

9.10 Certified Design Report

9.11 Design by Analysis

9.12 Appendix F

9.13 Fatigue Analysis

9.14 Buckling

9.15 Reinforcement of Cone-to-Cylinder

Junction

9.16 Plastic Analysis

9.17 Design by Formula

9.18 Openings

9.19 Bolted Flange Connections

9.20 Welded Connections

9.21 General Fabrication Requirements

9.22 Tolerances

9.23 Requirements for Weld Joints

9.24 Welding Qualifications

9.25 Rules for Marking, Examining,

and Repairing Welds

9.26 Heat Treatment

9.27 Examination

9.28 Qualifications and Certification of NDE Personnel

9.29 Testing

9.30 Overpressure Protection

9.31 Nameplates, Stamping, and Reports

9.32 Recommendations

9.33 References

9.34 Summary of Changes

CHAPTER 10 Subsection NFSupports

Uma S. Bandyopadhyay

10.1 Executive Summary

10.2 NF-1000 Introduction

10.3 NF-2000 Materials

10.4 NF-3000 Design

10.5 NF-4000 Fabrication and Installation

10.6 NF-5000 Examination

10.7 NF-8000 Nameplates, Stamping,

and Reports

10.8 NF Appendices

10.9 Code Cases and Interpretations

10.10 Summary of Changes

10.11 ASME B31.1 and B31.3 Supports

10.12 References

CHAPTER 11 Subsection NGCore Support

Structures

Richard O. Vollmer

11.1 Introduction

11.2 Definition of Core Support

Structures (NG-1120)

11.3 Jurisdictional Boundaries (NG-1130)

11.4 Unique Conditions of Serivce

11.5 Materials of Construction (NG-2000)

11.6 Special Materials

11.7 Design (NG-3000)

11.8 Fabrication and Installation (NG-4000)

11.9 Examination (NG-5000)

11.10 Testing
11.11 Overpressure Protection

11.12 Nameplates/Stamping Effects (NG-8000)

11.13 Environmental Effects (NG-3124)

11.14 Special Bolting Requirements (NG-3230)

11.15 Code Cases (NCA-1140)

11.16 Interpretations for Subsection NG

11.17 Elevated Temperature Applications

11.18 Additional Considerations

11.19 Beyond the State-of-the-Art

11.20 References

11.21 Abbreviations and Nomenclature

11.22 Summary of Changes

CHAPTER 12 Subsection NHClass 1

Components in Elevated Temperature Service

Robert I. Jetter

12.0 Introduction and Scope

12.1 Article NH-1000, Introduction

12.2 Article NH-2000, Materials

12.3 Article NH-3000, Design

12.4 Article NH-4000, Fabrication and Installation

12.5 Article NH-5000, Examination

12.6 Article NH-6000, Testing

12.7 Article NH-7000, Overpressure Protection

12.8 Other Component Classes, Components,

and Materials

12.9 Current and Emerging Issues for Nuclear

Components in Elevated Temperature Service

12.10 Future ASME Code Considerations for Nuclear

Components in Elevated Temperature Service

12.11 References

CHAPTER 13 Nuclear Pumps

Robert E. Cornman, Jr

13.1 Introduction

13.2 General Section III Requirements

13.3 Specific Pump Requirements

13.4 General Requirements for Class 1 Pumps

13.5 NC-3400 Class 2 Pumps

13.6 ND-3400 Class 3 Pumps

13.7 General Requirements for Class 2 and 3 Pumps

13.8 Changes in the 2010 Editions

13.9 References

13.10 Additional Documents of Interest

CHAPTER 14 Nuclear Valves

Guy A. Jolly

14.1 Introduction

14.2 General Section III Requirements

14.3 Specific Valve Requirements

14.4 NC-3500 and ND-3500, Class 2

and Class 3 Valves

14.5 Changes in the 2010 Edition

14.6 Other Valve Standards

14.7 References

14.8 Additional Documents of Interest
SECTION III DIVISION 2

CHAPTER 15 Code for Concrete Containments

Joseph F. Artuso, Arthur C. Eberhardt,

Clayton T. Smith, Michael F. Hessheimer

and Ola Jovall

15.1 Introduction

15.2 Future Containment Development

15.3 Background Development of Concrete

Containment Construction Code Requirements

15.4 Reinforced-Concrete Containment Behavior

15.5 Concrete Reactor Containment Design

Analysis and Related Testing

15.6 Code Design Loads

15.7 Allowable Behavior Criteria

15.8 Analytical Models and Design Procedures

15.9 Special Design Features

15.10 Current Organization of the Code

15.11 Article CC-4000: Fabrication and Construction

15.12 Article CC-5000: Construction Testing

and Examination

15.13 Article CC-6000: Structural Integrity Test of

Concrete Containments

15.14 Article CC-7000: Overpressure Protection

15.15 Article CC-8000: Nameplates, Stamping,

and Reports

15.16 Practical Nuclear Power Plant Containment

Designed to Resist Large Commercial Aircraft

Crash and Postulated Reactor Core Melt

15.17 Items Which Should Be Considered in Future

Revisions of the Code

15.18 Summary

15.19 References

SECTION III DIVISION 3

CHAPTER 16 Containments for Transportation and

Storage of Spent Nuclear Fuel and High-Level

Radioactive Material and Waste

D. Keith Morton and D.Wayne Lewis

16.1 Introduction

16.2 Historical Development

16.3 Scope of Subgroup NUPACK

16.4 Code Development

16.5 General Provisions

16.6 Specified Loading Categories

16.7 Allowable Stress

16.8 Materials, Fabrication, Installation,

Examination, and Testing

16.9 Code Text Organization

16.10 Current Activities in Division 3

16.11 Suggested Enhancements for the Future

16.12 References

16.13 Summary of Changes

SECTION III DIVISION 5

CHAPTER 17 Division 5High Temperature Reactors

D. Keith Morton and Robert I. Jetter
17.1 Introduction

17.2 Scope

17.3 Background

17.4 Organization of Division 5

17.5 Future Expectations

17.6 Summary

17.7 References, Including Annotated

Bibliographical Notations

PART 4: HEATING BOILERSSECTION IV & VI OF

B&PV CODE

CHAPTER 18 ASME Section IV: Rules for the

Construction of Heating Boilers

Edwin A. Nordstrom

18.1 Introduction

18.2 Part HG: General Requirements for All

Materials of Construction

18.3 Part HF: Requirements for Boilers

Constructed of Wrought Materials

18.4 Part HF, Subpart HW: Requirements for

Boilers Fabricated by Welding

18.5 Part HF, Subpart HB: Requirements for

Boilers Fabricated by Brazing

18.6 Part HC: Requirements for Boilers

Constructed of Cast Iron

18.7 Rules of Part HA: Hot Water Heating Boilers

Constructed Primarily of Cast Aluminum

18.8 Part HLW: Requirements for

Potable-Water Heaters

18.9 Considerations Likely to Be in Future

Code Editions

18.10 What Should the ASME Code Committees

and Regulators Consider, Recognizing the

Intent of the ASME B&PV Code?

18.11 References

CHAPTER 19 ASME Section VI: Recommended

Rules for the Care and Operation of

Heating Boilers

Edwin A. Nordstrom

<str

دانلود با لینک مستقیم


دانلود کتاب Companion Guide to the ASME Boiler & Pressure Vessel Code 4Ed VOLUME 1

Wall pressure fluctuations in transonic shock/boundary layer interaction (مقاله لاتین می باشد و فاقد ترجمه می باشد7ص )

اختصاصی از فی موو Wall pressure fluctuations in transonic shock/boundary layer interaction (مقاله لاتین می باشد و فاقد ترجمه می باشد7ص ) دانلود با لینک مستقیم و پر سرعت .

 Abstract

The structure of wall pressure fluctuations beneath a turbulent boundary layer interacting with a normal shock wave is investigated through direct numerical simulation (DNS). In the zeropressure-gradient (ZPG) region upstream of the interaction pressure statistics well compare with canonical boundary layers in terms of fluctuation intensities and frequency spectra. Across the interaction zone, the r.m.s. wall pressure fluctuations attain large values (in excess of ≈ 162 dB), with an increase of about 7 dB from the upstream level. The main effect of the interaction on the frequency spectra is to enhance of the low-frequency Fourier modes, while inhibiting the high-frequency ones. Excellent collapse of frequency spectra is observed past the interaction zone when data are scaled with the local boundary layer units. In this region an extended ω−7/3 power-law behavior is observed, which is associated with the suppression of mean shear caused by the imposed adverse pressure gradient.

ترجمه ماشینی

چکیده
ساختار نوسانات فشار دیوار زیر لایه مرزی آشفته تعامل با یک موج شوک نرمال است که از طریق شبیه سازی عددی مستقیم (DNS) بررسی شده است. در صفر گرادیان فشار (ZPG) منطقه بالادست از آمار فشار تعامل خوبی با لایه مرزی متعارف از نظر شدت نوسانات و طیف فرکانس مقایسه. در سراسر منطقه تعامل، این r.m.s. نوسانات فشار دیوار رسیدن به ارزش های بزرگ (بیش از ≈ 162 دسی بل)، با افزایش حدود 7 دسی بل از سطح بالادست. اثر اصلی از تعامل در طیف فرکانس است به منظور افزایش از حالات فوریه با فرکانس پایین، در حالی که مهار آنهایی که با فرکانس بالا. فروپاشی عالی از طیف فرکانس گذشته منطقه تعامل مشاهده زمانی که داده ها با واحد لایه مرزی محلی کوچک. در این منطقه ω-7/3 رفتار قدرت قانون شده مشاهده شده است، که با سرکوب میانگین برشی ناشی از گرادیان فشار معکوس تحمیل مرتبط

 


دانلود با لینک مستقیم


Wall pressure fluctuations in transonic shock/boundary layer interaction (مقاله لاتین می باشد و فاقد ترجمه می باشد7ص )