فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی موو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

اختصاصی از فی موو اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم دانلود با لینک مستقیم و پر سرعت .

اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه

حاصل از ترجمه مقالات معتبر خارجی - 43 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

_______________________________________________________________________________________

لینک عضویت در کانال تلگرامی دنیای فایل:

جهت اطلاع از آخرین و تمام فایلهای تحقیقاتی موجود، شما می توانید با کلیک بر روی لینک زیر و سپس کلیک بر روی join در پایین صفحه در کانال عضو شوید

https://telegram.me/joinchat/CYcguj_Bx3i5GIwnbs2zTw

 

_______________________________________________________________________________________

payannameht@gmail.com

فایلهای مرتبط :

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

روشهای سنتز نانو ذرات اکسید تیتانیوم و لایه های نازک اکسید تیتانیوم

 

مقدمه

در کاربردهای مختلف این مواد، روش­های سنتز نانوساختارها و پارامترهای موثر در هر روش نقش بسیار مهمی دارند. در این فصل به بررسی و مطالعه اثر پارامترهای مهم در سنتز نانوذرات و لایه­های نازک اکسید تیتانیوم به روش سل ژل و اسپری پایرولیزیز می­پردازیم.

 

 

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل

3-1-1- نقش عامل کمپلکس­ساز

بطور کلی با کنترل فرایند تبدیل سل به ژل می­توان اندازه و شکل ذرات را کنترل کرد .در روش سل ژل اگر تعداد بیشتری از یون­های فلزی در محلول اولیه توسط عامل کمپلکس­ساز به کی­لیت تبدیل شوند، در نهایت ژل همگن­تری خواهیم داشت. بنابراین نوع وغلظت عامل کمپلکس­ساز در سنتز نانوساختارهایی یکنواخت مهم خواهد بود. در مقالاتی که گزارش خواهیم کرد، نقش این پارامتر مهم را بر روی خواص ساختاری نانوساختارهای دی­اکسید تیتانیوم بررسی می­کنیم.

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس­ساز مختلف به روش سل­ژل

یوکاوا[1]و همکارنش توانستند با پیش­ماده تیتانیوم تترا ایزوپروپکساید (TTIP) در دمای پایین، نانوذرات دی­اکسیدتیتانیوم را با فاز آناتاس و روتایل سنتز کنند [1]. آن­ها نشان دادند که حضور گروه­های هیدروکسیل (-OH) در عامل­های کمپلکس­ساز واکنش­های هیدرولیز را کنترل کرده و با افزایش تعداد اتم­های کربن و گروه­های  OHبرهمکنش بین عامل کمپلکس­ساز و یون­های Ti+4 افزایش می­یابد. در این تحقیق، از چهار پلی­ال متفاوت بعنوان عامل کمپلکس­ساز استفاده کرده و اثر تغییر غلظت آن­ها را روی گذار فاز، مورفولوژی و اندازه ذرات بررسی کرده­اند.

 در اینجا نتایج بدست آمده از عامل­های کمپلکس­ساز اتیلن­گلیکول[2][HOCH2CH2OH] و دی­مانیتول[3] [HOCH2CH(OH)CH(OH)CH(OH)CH(OH)CH2OH] را گزارش خواهیم کرد.

- روش تهیه نانوذرات TiO2

30 درصد وزنی محلول H2O2 به 10 میلی لیتر از محلول 1 مولار اتانول حاویTTIP  که نسبت مولی آن با آب اکسیژنه برابر 12:1 است اضافه شده است. سپس محلول بدست آمده، هر بار با 100 میلی لیتر اتیلن گلیکول و دی­مانیتول رقیق شده است. غلظت پلی­ال­ها از mol/l0 تا 5 تغییر داده شده­اند. محلول در دمای 95 به­مدت 24 ساعت حرارت­دهی شد. سپس برای حذف ترکیبات آلی، فرآیند پراکنده­سازی ژل در 500 میلی لیتر آب مقطر در دمای 75 برای 1 ساعت انجام شده است. عملیات شستشو ژل تا 3 بار تکرار شد، سپس ژل را از آب جدا کرده و در دمای95 برای 12 ساعت در اتمسفر قرار داده­اند تا خشک گردد.

طیف­های پراش پرتو X (شکل 3-1-الف) در غیاب اتیلن­گلیکول، حضور ترکیبی از فاز آناتاس و روتایل را در نمونه­های تهیه شده نشان می­دهند. با افزایش غلظت اتیلن گلیکول از شدت پیک­های متعلق به فاز روتایل کاسته...

.

.

 

 

 

فهرست مطالب

عنوان                                                                                           صفحه

 

 

فصل سوم: مطالعه پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم   1

3-1- بررسی پارامترهای موثر بر روی خواص نانوساختارهای اکسید تیتانیوم تهیه شده به روش سل- ژل.. 1

3-1-1- نقش عامل کمپلکس ساز 1

3-1-1-1- سنتز نانوذرات تیتانیا با حضور عامل کمپلکس ساز مختلف به روش سل ژل.. 2

3-1-1-2- مقایسه عملکرد عامل های کمپلکس ساز در تهیه لایه های نازک TiO2 به روش سل ژل.. 5

3-1-2- نقش حلال.. 13

3-1-3- اثر دمای بازپخت... 19

3-1-4- تغییر نسبت آب به آلکوکسید. 23

3-1-5- نوع کاتالیزور 26

3-1-6- اثر pH.. 27

3-2- بررسی پارامترهای موثر بر روی خواص لایه های نازک اکسید تیتانیوم تهیه شده به روش اسپری پایرولیزیز  30

3-2-1- اثر روش لایه نشانی (اسپری پایرولیزیز و مگنترون اسپاترینگ) بر روی خواص ساختاری، اپتیکی و فوتوکاتالیستی TiO2 30

3-2-2- بررسی خواص لایه های نازک تهیه شده به روش اسپری پایرولیزیز با تغییردمای بستر و تغییر زیرلایه  34

 مراجع. 38

 

 

 

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول3-1: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز (با استفاده از داده های رامان) 10

جدول3-2: ترکیب فاز لایه ها بصورت تابعی از دما برای هر عامل کمپلکس ساز و اندازه ذرات محاسبه شده با فرمول دبی-شرر.(با استفاده از داده های XRD) 11

جدول3-3: ترکیب و شکل ظاهری رسوب تیتانیا با حلال های مختلف... 15

جدول3-4: میانگین اندازه بلورک ها با رابطه شرر 17

جدول3-5: نتایج اندازه گیری های XRD و تعیین اندازه بلورک ها با رابطه شرر 22

جدول3-6: مساحت سطح موثر نانوذرات تیتانیا در دماهای بازپخت مختلف... 23

جدول3-7: مساحت سطح موثر پودر تیتانیا در درجه هیدرولیز متفاوت با کاتالیزور مختلف 25

جدول3-8: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپاترینگ... 32

جدول3-9: رابطه بین تعدادی از خواص فیزیکی فیلم  TiO2و پارامترهای لایه نشانی به روش اسپری پایرولیزیز 32

جدول3-10: شرایط لایه نشانی و خواص فیزیکی لایه های آناتاس بر روی بستر کوارتز و (100) Si 35

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل3-1: طیف XRD پودر تیتانیا تهیه شده در دمای K 368 به مدت h 24 با عامل کمپلکس ساز الف: اتیلن گلیکول در غلظت (a) mol/l0، (b) mol/l 1، (c) mol/l2 (d) mol/l5. 4

شکل3-2: حضور نسبی فاز آناتاس بر حسب غلظت های عامل کمپلکس ساز. ○: دی مانیتول، ∆: اتیلن گلیکول  4

شکل3-3: مساحت سطح موثر (SBET) نانوپودر TiO2 برحسب غلظت پلی ال. ○: دی مانیتول، : اتیلن گلیکول.. 5

شکل3-4: تصاویر FE-SEM با عامل کمپلکس ساز دی مانیتول در غلظت های.. 5

شکل3-5: رابطه بین غلظت دی مانیتول و مقدار کربن.. 6

شکل3-6: طیف IR فیلم TiO2 در دماهای مختلف با عامل (الف) DEA، (ب)  AcAc. 8

شکل3-7: طیف IR فیلم TiO2 در دماهای مختلف با عامل DEA+AcAc. 9

شکل3-8: طیف رامان لایه های TiO2 در دماهای مختلف با عامل (a)AcAc ، (b)PEG + AcAc. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل   10

شکل3-9: طیف های XRD فیلم های TiO2 با عامل های کمپلکس ساز مختلف در دمای (a) C˚500 و (b) C˚800  11

شکل3-10: طیف IR محلول اولیه شامل عامل کمپلکس ساز (1) DEA، (2) TEA، (3) AcAc، (4) H3L و (5) HAC 12

شکل3-11: تصاویر  SEMو مورفولوژی سطوح لایههای نازک با عامل کمپلکس ساز (a) DEA، (b) TEA، (c) AcAc، (d) HAC و (e) H3L. با حلال (a-e) EtOH و (f) n- butanol 12

شکل3-12: استیل استن در دو شکل شیمیایی.. 15

شکل3-13: شکل گیری کی لیت بین استیل استن و تیتانیوم ایزوپروپکساید. 15

شکل3-14: طیف FTIR رسوب تیتانیا (a) در حضور عامل کمپلکس ساز 16

شکل3-15: طیف XRD رسوب تیتانیا بدون عملیات حرارتی (a) با حلال استن (b) با حلال هگزان (c) باحلال استن بدون عامل کمپلکس ساز. با انجام عملیات حرارتی در دمای C˚450 برای 1 ساعت (d) با حلال استن 17

شکل3-16: تصاویر SEM رسوب تیتانیا با حلال (a) استن، (b) بوتانول.. 18

شکل3-17: تصاویر SEM رسوب تیتانیا ، با حلال (a) تولوئن و (b) هگزان، با بزرگنمایی زیاد 18

شکل3-18: عکس های TEM (a) سل کلوئیدی با ذرات TiO2، (b) ژل بدون آب (c) ژل خشک بازپخت شده در دمای C˚400 برای 2 ساعت 20

شکل3-19: الگوی پراش پرتو x اکسید تیتانیوم (a) قبل و بعد از بازپخت در دمای (b) C˚400، (c) C˚500، (d) C˚600 و (e) C˚700 21

شکل3-20 (a-d): طیف های  XRDنانوپودر تیتانیا بازپخت شده در دماهای مختلف با کاتالیزور HCL و نسبت آب 1x= (a)، 2x= (b)، 3x= (c)، 4x= (d). نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 23

شکل3-21: تغییر اندازه بلورک ها با افزایش دمای بازپخت در (a) 2x= و (b) 4x= 23

شکل3-22: تغییر اندازه بلورک ها با افزایش دمای بازپخت دردرجه هیدرولیز مختلف 24

شکل3-23: تصاویر  TEMنانوذرات تیتانیا (a) سنتز شده در 1x= (b) سنتز شده در 4x= (c) بازپخت شده در دمای C˚400 برای 2 ساعت در 4x= 25

شکل3-24: طیف  XRDپودر تیتانیا در دماهای بازپخت مختلف و با کاتالیزور استیل استن. نماد A متعلق به فاز آناتاس و R متعلق به فاز روتایل 26

شکل3-25: طیف XRD پودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-26: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚400 برای 2 ساعت در pH (a)2، (b)4، (c)6 27

شکل3-27: طیف XRD پودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-28: عکس های  SEMپودر TiO2 بازپخت شده در دمای C˚800 برای 2 ساعت در pH (a)2، (b)4، (c)6 28

شکل3-29: طیف XRD فیلم TiO2 تهیه شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 30

شکل3-30: طیف عبور اپتیکی فیلم  TiO2سنتز شده به روش (a) اسپاترینگ (b) اسپری پایرولیزیز 31

شکل3-31: تغییرات جذب متیلن آبی (ABS ) روی سطح فیلم TiO2 بر حسب پارامترهای لایه­نشانی در دو روش اسپاترینگ و اسپری پایرولیزیز 32

شکل3-32: درصد عبور لایه های TiO2 آغشته به متیلن آبی بصورت تابعی از زمان نوردهی در دو روش اسپاترینگ و اسپری پایرولیزیز  32

شکل3-33: طیف XRD فیلم TiO2 در دمای بستر (a) C˚250، (b) 400، (c) 500 . 34

شکل3-34: تصاویر AFM (a,b) C˚250Ts=، (c,d) C˚400Ts=، (e,f) C˚500Ts= 35

شکل3-35: تصویر  SEMلایه های TiO2 تهیه شده در دمای بستر (a) C˚250، (b) 400، (c) 500 ........ 36

شکل3-36: ضریب جذب و گاف غیرمستقیم لایه های نشانده شده روی بستر کوارتز 36


دانلود با لینک مستقیم


اثر پارامترهای سنتز بر روی خواص ساختاری و اپتیکی نانوساختارهای اکسید تیتانیوم

مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانو ذرات آلومینا

اختصاصی از فی موو مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانو ذرات آلومینا دانلود با لینک مستقیم و پر سرعت .

مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانو ذرات آلومینا

مقدمه ای کامل و جامع وبسیار مناسب برای پایان نامه ۳۰ صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

 

_______________________________________________________________________________________

لینک عضویت در کانال تلگرامی نفیس بازار:

جهت اطلاع از آخرین و تمام فایلهای تحقیقاتی موجود، شما می توانید با کلیک بر روی لینک زیر و سپس کلیک بر روی join در پایین صفحه در کانال عضو شوید

https://telegram.me/nafisbazar

_______________________________________________________________________________________

payannameht@gmail.com

 

فهرست مطالب

 

عنوان                                                                                         صفحه 

 

مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانوذرات آلومینا 1

1-1- اثر پیش­ماده­های متفاوت.. 1

1-2- اثر غلظت مولی مواد اولیه. 3

1-2-1- سنتز پودر بسیار ریز با استفاده از یک روش سل ژل ساده 4

1-2-2- کنترل مورفولوژی نانوساختارهای آلومینا به روش بدون قالب سلووترمال.. 5

1-3- اثر دما 7

1-4- اثر روش­های مختلف سنتز. 14

1-5- اثر pH.. 16

1-6- اثر روش خشک کردن روی ذرات نهایی.. 21

1-6- اثر عامل رسوب دهنده 27

 

 

فهرست جدول­ها

 

 جدول 1-1: ویژگی­های پودر ژل، بوهمیت و آلومینای گذاری سنتز شده در دماهای مختلف

جدول 1-2: نتایج مشاهدات DTA و TEM زیروژل به دست آمده در pH مختلف

جدول 1-3: افزایش تدریجی دما و فشار اتوکلاو متناسب با زمان گرمادهی

جدول 1-4: سطح مقطع، متوسط شعاع حفره­ها و چگالی حفره­های γ-آلومینا سنتز شده با عامل­های رسوب مختلف

 

 

 

فهرست شکل­ها

  

شکل 1-1: طیف XRD ذرات به دست آمده با پیش ماده (a) نیترات آلومینیوم (b) سولفات آلومینیوم

شکل 1-2: تصویر SEM نمونه­های سنتز شده با (a نیترات آلومینیوم و بازپخت شده در دمای ˚C 1100 

شکل 1-3: طیفXRD نمونه­های باز پخت شده در دمای ˚C1000 (a) 5/0 C/N= (b) 1C/N=  (c) 2C/N=

شکل 1-4: تصویر FESEM پودر بازپخت شده در دمای ˚C1000 با نسبت-های مختلف (a) 5/0C/N=

شکل 1-5: تصویرTEM  نانوکریستال­های بوهمیت سنتز شده در دمای ˚C190 به مدت 20 ساعت با حلال­های مختلف (A) تولوئن و ایزوپروپانول با نسبت حجمی برابر (B) تصویر HRTEM از یک نانوتیوپ  (C) ایزوپروپانول (D) تولوئن (E)  اتیلن دیامین و ایزوپروپانول با نسبت حجمی برابر (F) آب و ایزوپروپانول با نسبت حجمی برابر 

شکل 1-6: طیف XRD نمونه­ها (A) قبل از بازپخت (B) بعد از بازپخت  (a) تولوئن و ایزوپروپانول (b) آب مقطر و ایزوپروپانول (c) ایزوپروپانول

شکل 1-7: طیف XRD پودر ژلی، بوهمیت و نمونه­های باز پخت شده در دماهای ˚C500 تا ˚C600 به مدت 6 ساعت و ˚C1000 به مدت 1 ساعت   9

شکل 1-8: طیف XRD نمونه­های باز پخت شده در دمای ˚C500 تا ˚C100

شکل 1-9: تصویر FESEM نانوپولک­های بوهمیت

شکل 1-10: تصویر TEM a)) بوهمیت و نمونه­های بازپخت شده در  (b)  ˚C500 ،c) ) ˚C600 ،d) ) ˚C700 

شکل 1-11: تصویر TEM نمونه­های بازپخت شده در  a)) ˚C800 ،b) ) ˚C900 ،c) ) ˚C1000 

شکل 1-12: ((a نمودار جذب N2 بوهمیت و پودرهای بازپخت شده در دمای مختلف ((b توزیع اندازه حفره­ها

شکل 1-13: سطح مقطع نانوذرات سنتز شده به روش (a) میکروامولسیون (b) سل ژل بر حسب زمان بازپخت

شکل 1-14: طیف XRD نمونه­های تهیه شده به روش 1)میکروامولسیون 2) سل ژل

شکل 1-15: تصویر TEM نمونه­های تهیه شده به روش a)) میکروامولسیون b)) سل ژل 

شکل 1-16: طیف XRD نانو ذرات α-آلومینا

شکل 1-17: فلوچارت تهیه نانو ذرات α-آلومینا به روش کلوئیدی

شکل 1-18: طیف XRD نانو ذرات تهیه شده در 12 PH=بازپخت شده در دمای˚C (a) 450 (b) ˚C1200 

شکل 1-19: تصویر TEM پودر به دست آمده در ((a 12pH= و ((b 8pH= (c) 5/2pH=

شکل 1-20: سطح مقطع موثر پودرهای تهیه شده در pH متفاوت بعد از بازپخت در ˚C1200

شکل 1-21: طیف XRD زیروژل باز پخت شده در دماهای مختلف

شکل 1-22: طیف XRD  نانو γ-آلومینا تهیه شده به روش خشک کردن فوق بحرانی در زمانهای مختلف خروج بخار اتانول (C) min10  (D) min30  (E) min50

شکل 1-23: تصویر SEM آلومینای تهیه شده به روش ((a بازپخت زیروژل در ˚C800  ((b خشک کردن فوق بحرانی

شکل 1-24: تصاویر  SEM، FESEM و TEM آلومینا تهیه شده به روش فوق بحرانی در زمان­های مختلف خروج اتانول (a)، (b)، (c) 10 دقیقه   (d)، (e)، (f) 50 دقیقه

شکل 1-25: طیفXRD  (A بوهمیت  (B γ-آلومینا تهیه شده ازعامل رسوب (a) NH4HCO3                     (b) (NH4)2CO3

شکل 1-26: قدرت جذب فلوراید γ-آلومینا سنتز شده با 1) بیکربنات آمونیوم (2 بیکربنات سدیم (3 کربنات آمونیوم (4 کربنات سدیم

شکل 1-27: تصویر SEM γ-آلومینا تهیه شده ازعامل رسوب (a) بی کربنات آمونیوم (b) کربنات آمونیوم (c) بی کربنات سدیم (d) کربنات سدیم

 

 


دانلود با لینک مستقیم


مطالعه اثر پارامترهای سنتز بر روی خواص ساختاری نانو ذرات آلومینا

بررسی پارامترهای مختلف ترانسفورماتورهای قدرت

اختصاصی از فی موو بررسی پارامترهای مختلف ترانسفورماتورهای قدرت دانلود با لینک مستقیم و پر سرعت .

بررسی پارامترهای مختلف ترانسفورماتورهای قدرت


بررسی پارامترهای مختلف ترانسفورماتورهای قدرت

بررسی پارامترهای مختلف ترانسفورماتورهای قدرت

125 صفحه در قالب word

 

 

 

 

 

موضوع: بررسی پارامترهای مختلف ترانسفورماتورهای قدرت وانواع ترانسها درشبکه های قدرت،وتجزیه تحلیل روشهای مختلف نگهداری وسرویس ترانسها
جهت بهره برداری با راندمان حداکثراز ترانسفورماتورهای  شبکه های  قدرت

مقدمه :
ترانسفورماتور که یکی از مهمترین وسایل در سیستمهای قدرت (تولید ، انتقال و توزیع ) به شمار می رود ، دارای ساختمانی ساده بوده و با قابلیت اطمینانی بالا برای تبدیل یک ولتاژ متناوب از یک سطح به سطحی دیگر مورد استفاده قرار می گیرد،بدون اینکه فرکانس تغییری بکند .فقط مقادیر ولتاژوجریان است که دراولیه وثانویه متفاوت می باشد. ترانسفورماتورها نه تنها به عنوان اجزاء اصلی سیستم های انتقال وپخش انرژی مطرح هستند بلکه درتغذیه مدارهای الکترونیک وکنترل،یکسوسازی،اندازه گیری وکوره های الکتریکی نیز نقش مهمی بر عهده دارند.با تمام ساده بودن ساختمان ترانسفورماتورها در اثر توسعه و پیشرفت تکنولوژی از حدود صد سال پیش که اولین ترانسفورماتور سه فاز ساخته شد تا به امروز تغییرات زیادی در شکل ظاهری ، ساختمان و قدرت ترانسفورماتورها به وجود آمده است . ترانس فورماتور از دو قسمت اصلی هسته و دو یا چند قسمت سیم پیچ که روی هسته پیچیده می شود تشکیل می شود , ترانس فورماتور یک دستگاه الکتریکی است که در اثرالقای مغناطیسی بین سیم پیچ ها انرژی الکتریکی را ازمدارسیم پیچ اولیه به ثانویه انتقال می دهد بطوری که در نوع انرژی و مقدار آن تغییر حاصل نمی شود ولی ولتاژ و جریان تغییر می کند. اصول کار ترانس فورماتور براساس القای متقابل سیم پیچ ها است .

فهرست مطالب:
انواع ترانسهای قدرت
ترانسفورماتور ایده آل
انواع اتصال سیم پیچ ها-هسته –ترانسفورماتور تکفاز
سیم پیچ های ترانس-جنس هادی ها
ترانسفورماتورهای سه فاز
اتصال سیم پیچی های ترانس سه فاز
انواع هسته ترانس سه فاز
تلفات در ترانسفورماتورها
تانک روغن ترانسفورماتورهای قدرت
سیستم های خنک کنندگی ترانس های قدرت
فن ها درترانسهای قدرت
پمپ ها درترانس قدرت
روغن ترانسفورماتور
مشخصات روغن ترانسها
رطوبت گیر-شیر اطمینان- ترمومتریا دماسنج درترانس قدرت
رله بوخهلتز
حفاظتهای مکانیکی ترانس
تست های ترانس قدرت
تپ چنجردرترانسهای قدرت
ترانسفورماتورهای خشک
ترانسفورماتورهای هرمتیک-ترانس ولتاژv.t
ترانس های جریانc.t
حفاظتهای ترانس قدرت
زمین کردن (ارت)-ایزولاتور(مقره)
مقره های مورد استفاده در ترانس های قدرت(بوشینگ ها)
تست های مربوطه به بوشینگ ها
برق گیر- میگر
اثرات فشار منفی-اضافه ولتاژهای رزونانس در ترانس توزیع
بررسی علل آسیب دیدن ترانسهای توزیع وروشهای پیشگیری
اضافه بار- اضافه ولتاژ موقت - نفوذ رطوبت
اضافه ولتاژ های گذرا بر روی ترانس های قدرت
بروز جرقه یا هارمونیک در اولیه ترانس های قدرت
راههای پیشگیری عیوب ترانس وبروز اضافه بار در ترانس قدرت
روش بالابردن عمر ترانس
تاثیر بالا رفتن دمای محیط-ترانسفورماتورهای ابررسانا
نکات قابل توجه قبل ازحمل ترانس
حمل بدون روغن ترانس نکات مهم قبل از راه اندازی ترانسهای قدرت
سیستم نمایش ومدیریت ترانسفورماتورهای قدرت tmms
ترانسهای سازگار با هارمونیک-ترانسهای مقاوم عامل k
ترانسفورماتور HMT
تعمیرات پیشگیرانه مانیتورینگ گازهای محلول در روغن ترانس قدرت
آنالیز گازهای محلول درروغن ترانس قدرت
تصفیه روغن ترانسهای قدرت
کاتالیسهاونقش آنها در حذف مولفه صفر جریان در حفاظت دیفرانسیل
پایداری حفاظت دیفرانسیل ترانس قدرت
مواردی کلی در مورد ترانسهای قدرت نیروگاهی
رله های حفاظت الکتریکی ترانس های نیروگاهی
رله دیفرانسیل
مروری بر مواد عایقی به کاربرده شده در ساختار عایق ترانس
روغن عایقی ترانس
روش GPC یا کروماتوگرافی تزریق ژل در ترانسهای قدرت
تخلیه جزئی PD در ترانسفورماتورهای قدرت
اندازه گیری جریان دی پلاریزاسیون PD
ترانسفورماتورها وبهم پیوستگی مکانیکی
چگونگی انجام تست SFRA ترانسهای قدرت
بررسی حالت های ترانسهای نیروگاهیGSU
مروری بر تئوری آزمایشاتSFRA ترانسهای قدرت
منابع وماخذ

 

مقدمه :

ترانسفورماتور که یکی از مهمترین وسایل در سیستمهای قدرت (تولید ، انتقال و توزیع ) به شمار می رود ، دارای ساختمانی ساده بوده و با قابلیت اطمینانی بالا برای تبدیل یک ولتاژ متناوب از یک سطح به سطحی دیگر مورد استفاده قرار می گیرد،بدون اینکه فرکانس تغییری بکند .فقط مقادیر ولتاژوجریان است که دراولیه وثانویه متفاوت می باشد.   ترانسفورماتورها نه تنها به عنوان اجزاء اصلی سیستم های انتقال وپخش انرژی مطرح هستند بلکه درتغذیه مدارهای الکترونیک وکنترل،یکسوسازی،اندازه گیری وکوره های الکتریکی نیز نقش مهمی بر عهده دارند.با تمام ساده بودن ساختمان ترانسفورماتورها در اثر توسعه و پیشرفت تکنولوژی از حدود صد سال پیش که اولین ترانسفورماتور سه فاز ساخته شد تا به امروز تغییرات زیادی در شکل ظاهری ، ساختمان  و قدرت ترانسفورماتورها به وجود آمده است . ترانس فورماتور از دو قسمت اصلی هسته و دو یا چند قسمت سیم پیچ که روی هسته پیچیده می شود تشکیل می شود , ترانس فورماتور یک دستگاه الکتریکی است که در اثرالقای مغناطیسی بین سیم پیچ ها انرژی الکتریکی را ازمدارسیم پیچ اولیه به ثانویه انتقال می دهد بطوری که در نوع انرژی و مقدار آن تغییر حاصل نمی شود ولی ولتاژ و جریان تغییر می کند. اصول کار ترانس فورماتور براساس القای متقابل سیم پیچ ها است .

انواع اصلی ترانسفورماتورها را می توان بر حسب وظایف آنها بصورت ذیل دسته بندی کرد:

1)ترانسفورماتورهای قدرت در نیروگاهها.

2)ترانسهای توزیع در پستهای توزیع زمینی وهوایی،برای پخش انرژی در سطح شهرها وکارخانه ها.

3)ترانسهای قدرت،برای مقاصد خاص مانند کوره های ذوب آلومینیم،یکسو سازهاوواحدهای جوشکاری.

4)اتوترانسها جهت تبدیل ولتاژبا نسبت کم وراه اندازی موتورهای القایی.

5)ترانسهای الکترونیک.

6)ترانسهای ولتاژ و جریان جهت مقاصد اندازه گیری و حفاظت.

7)ترانسهای زمین برای ایجاد نقطه صفر وزمین کردن نقطه صفر.

8)ترانسهای آزمایشگاه فشار قوی(که درآن سیم پیچ اولیه و ثانویه برروی یوغ بالایی، جهت سهولت

انتقال ولتاژ به بیرون از ترانس،نصب می شود.) (از انواع ترانسهای آزمایشگاهی میتوان به ترانس کاسکاد  جهت تولید ولتاژهای بالا در حدود 1200 کیلوولت ،به صورت پله پله وسری شده با یکدیگر،اشاره نمود).

با وجودی که تکنولوژی ساخت ترانسفورماتورها خیلی پیچیده نمی باشد و امروزه تقریباً تمامی کشورهای جهان به این تکنولوژی دسترسی پیدا کرده اند ولی به علت هزینه بالای مواد اولیه و قطعات و وسایلی که در ساخت ترانسفورماتور به کار می رود در نتیجه قیمت تمام شده آن بسیار زیاد می باشد و همچنین اهمیت زیادی که ترانسفورماتورها در انتقال انرژی دارند کارشناسان صنعت برق هر کشور را برآن می دارد که ضمن آشنایی با تمام دستاوردهای علمی روز و به کارگیری تجارب گذشته اهتمام زیادی را در شناساندن هر چه بیشتر از این وسیله با تهیه دستورالعملهایی جهت نگهداری بهتر آنها به کار برند .

*ترانس ایده آل:

یک ترانس ایده آل یا بدون تلفات،باید دارای شرایط زیر باشد:

1)منحنی مغناطیسی آن خطی بوده وازاثر اشباع درآن صرف نظر شده باشد.

2)ضریب نفوذ هسته آن خیلی زیاد باشد.(∞ →μ).

3)فوران پراکندگی نداشته باشدوفورانها تماماازداخل هسته عبور نمایند.

4)تلفات آهنی،درآن قابل صرف نظر باشد.

5)مقاومت سیم پیچ ها صفربوده وتلفات مسی نداشته باشد.

البته،ترانسی با این خصوصیات درعمل وجود نداردوترانسهای واقعی همواره دارای مقداری تلفات در هسته وسایر نقاط می باشند.

*ترانس تکفاز :

ترانسهای تکفاز از دو عدد سیم پیچی با نامهای اولیه و ثانویه ،که بر اساس القای الکترومغناطیسی،

اثراتی رااز طریق میدانهای  جاری شده در هسته و میدان های پراکندگی،بر روی یکدیگر داشته، وسبب

افزایش یا کاهش ولتاژ می شوند ،تشکیل شده است.

-* ترانسفورماتورهای سه فاز :

ترانسفورماتورهای سه فاز تقریباً 5 سال بعد از بوجود آمدن جریان متناوب سه فاز،توسط (دولیوو-دوبروولسکی)

اختراع شدند که ازسه ترانس تکفازتشکیل شده بودند.ودر حدود یک سال بعد ترانسهای سه ستونی که ستونهای آن در یک سطح قرار داشتند طرح ریزی وتوسط کارخانه آ.ا.گ ساخته شدند.

  ترانسفورماتورهای سه فاز با کمی تفاوت مثل ترانسفورماتورهای یک فاز هستند. در محاسبات ترانسفورماتورهای قدرت زیاد ، علاوه بر مسایل مربوط به ترانسفورماتورهای یک فاز ، مسایل ایمنی ، اقتصادی ، تعمیر و نگهداری ، کنترل و نیز وجود دارند.بدین منظور در تعیین پارامترهای ترانسفورماتورهای سه فاز به جای فرمول ها ، نقش عمده را تجربه و آزمایش های مختلف به عهده می گیرد

*ترانسفورماتور خشک :

 تکنولوژی/:

ساخت ترانسفورماتور فشار قوی فاقد روغن در طول عمر یکصد ساله ترانسفورماتورها، یک انقلاب محسوب    می شود. ایده استفاده از کابل با عایق پلیمر پلی اتیلن (XLPE) به جای هادیهای مسی دارای عایق کاغذی از ذهن یک محقق ABB در سوئد به نام پرفسور  “Mats lijon” تراوش کرده است.

تکنولوژی استفاده از کابل به جای هادیهای مسی دارای عایق کاغذی، نخستین بار در سال 1998 در یک ژنراتور فشار قوی به نام  “ Power Former” ساخت ABB به کار گرفته شد. در این ژنراتور بر خلاف سابق که از هادیهای شمشی ( مستطیلی ) در سیم پیچی استاتور استفاده می شد، از هادیهای گرد استفاده شده است. همانطور که از معادلات ماکسول استنباط می شود، هادیهای سیلندری ، توزیع میدان الکتریکی متقارنی دارند. بر این اساس ژنراتوری می توان ساخت که برق را با سطح ولتاژ شبکه تولید کند بطوریکه نیاز به ترانسفورماتور افزاینده نباشد. در نتیجه این کار، تلفات الکتریکی به میزان 30 در صد کاهش  می یابد.

در یک کابل پلیمری فشار قوی، میدان الکتریکی در داخل کابل باقی می ماند و سطح کابل دارای پتانسیل زمین  می باشد.در عین حال میدان مغناطیسی لازم برای کار ترانسفورماتور تحت تاثیر عایق کابل قرار نمی گیرد.در یک ترانسفورماتور خشک، استفاده از تکنولوژی کابل، امکانات تازه ای برای بهینه کردن طراحی میدان های الکتریکی و مغناطیسی، نیروهای مکانیکی و تنش های گرمایی فراهم کرده است.

در فرایند تحقیقات و ساخت ترانسفورماتور خشک در ABB، در مرحله نخست یک ترانسفورماتور  آزمایشی تکفاز با ظرفیت 10 مگا ولت آمپر طراحی و ساخته شد و در Ludivica   در سوئد آزمایش گردید. “ Dry former” اکنون در سطح ولتاژ های از 36 تا 145 کیلو ولت و ظرفیت تا 150 مگا ولت آمپر موجود است.

ویژگیهای ترانسفورماتور خشک: ترانسفورماتور خشک دارای ویژگیهای منحصر بفردی است از جمله:

1- به روغن برای خنک شده با به عنوان عایق الکتریکی نیاز ندارد.

2-  سازگاری این نوع ترانسفورماتور با طبیعت و محیط زیست یکی  از مهمترین ویژگی های آن است. به دلیل عدم وجود روغن، خطر آلودگی خاک و منابع آب زیر زمینی و همچنین احتراق و  خطر آتش سورزی کم میشود.

3- با حذف روغن و کنترل میدانهای الکتریکی که در نتیجه آن خطر ترانسفور ماتور از نظر ایمنی افراد ومحیط زیست کاهش می یابد، امکانات تازه ای از نظر محل نصب ترانسفورماتور فراهم میشود.به این ترتیب  امکانات نصب ترانسفورماتور خشک در نقاط شهری و جاهایی که از نظر زیست محیطی حساس هستند،  فراهم میشود.

4- در ترانسفورماتور خشک به جای بوشینگ چینی در قسمتهای انتهایی از عایق سیلیکن رابر استفاده میشود.  به این ترتیب خطر ترک خوردن چینی بوشینگ و نشت بخار روغن از بین میرود.

5-  کاهش مواد قابل اشتعال، نیاز به تجهیزات گسترده آتش نشانی کاهش میدهد. بنابراین از این دستگاهها در محیط های سر پوشیده و نواحی سرپوشیده شهری نیز می توان استفاده کرد.

6- با حذف روغن در ترانسفورماتور خشک، نیاز به تانک های روغن، سنجش سطح روغن، آلارم گاز و ترمومتر روغن کاملاً از بین میرود.بنابراین کار نصب آسانتر شده و تنها شامل اتصال کابلها و نصب تجهیزات خنک کننده خواهد بود.

7- از دیگر ویژگی های ترانسفورماتور خشک، کاهش تلفات الکتریکی است. یکی از راههای کاهش تلفات و بهینه کردن طراحی ترانسفورماتور، نزدیک کردن ترانسفورماتور به محل مصرف انرژی تا حد ممکن است تا از مزایای انتقال نیرو به قدر کافی بهره برداری شود. با بکار گیری ترانسفورماتور خشک این امر امکان پذیر است .

8- اگر در پست، مشکل برق پیش آید، خطری متوجه عایق ترانسفورماتور نمی شود. زیرا منبع اصلی گرما یعنی تلفات در آن تولید نمی شود.بعلاوه چون هوا واسطه خنک شدن است و هوا هم مرتب تعویض و جابجا می شود، مشکلی از بابت خنک شدن ترانسفورماتور بروز نمی کند.

ترانسفورماتور خشک با قدرت زیاد بندرت ساخته می شود زیرا این ترانسفورماتورها از نظر استقامت الکتریکی و دینامیکی خیلی ضعیف تر از ترانسفورماتورهای روغنی می باشند .

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم


بررسی پارامترهای مختلف ترانسفورماتورهای قدرت